749x
004143
2023-12-22

Główne

Zakładka Główne umożliwia zarządzanie podstawowymi parametrami pręta. Zazwyczaj po zaznaczeniu pola wyboru w sekcji 'Opcje' pojawia się kolejna zakładka. Dort können Sie jeweils die Details festlegen.

Typ pręta

Od wybranego typu pręta zależy, w jaki sposób przenoszone są siły wewnętrzne lub jakie właściwości są wymagane dla pręta. Na liście dostępne są różne typy prętów.

Belka

Belka jest prętem sztywnym na zginanie, który może przenosić wszystkie siły wewnętrzne. Belka nie posiada przegubów na swoich końcach. Ten typ pręta może być obciążony wszystkimi rodzajami obciążeń.

Sztywne

Pręt tego typu łączy przemieszczenia dwóch węzłów dzięki sztywnemu połączeniu. Zasadniczo pręt ten odpowiada zatem łącznikowi. Umożliwia on definiowanie prętów o bardzo dużej sztywności z uwzględnieniem przegubów, które mogą również mieć stałe sprężystości i nieliniowości. Nie występują przy tym problemy numeryczne, ponieważ sztywności są dostosowane do układu.

Für Starrstäbe werden Schnittgrößen ausgegeben, wenn Sie im Navigator - Ergebnisse unten in der Kategorie 'Stäbe' die Ergebnisse für Kopplungen aktivieren.

kratownica

Pręt kratownicy odpowiada belce z przegubami momentowymi na obu końcach. Dodatkowo obrót względem osi wzdłużnej na początku pręta jest zwalniany przez przegub φx. Dla tego typu pręta wyświetlane są momenty zginające i skręcające od obciążeń pręta.

Kratownica (tylko N)

Ten typ kratownicy o sztywności E ⋅ A jest w stanie przenosić siły normalne w postaci rozciągania i ściskania. Program RFEM wyświetla tylko siły wewnętrzne w węzłach. Rozkład sił wewnętrznych dla pręta jest liniowy pod warunkiem, że na pręt nie działa obciążenie skupione. Program RFEM nie pokazuje rozkładu momentów, który może powstać pod wpływem ciężaru własnego lub obciążenia liniowego. Siły węzłowe są obliczane na podstawie obciążeń pręta, co zapewnia ich prawidłowe przenoszenie.

Informacje

W przypadku pręta typu 'Kratownica (tylko N)' nie jest możliwe wyboczenie prostopadle do osi głównych. Z tego względu efekty wyboczeniowe są pomijane w obliczeniach.

Wskazówka

Der Unterschied zwischen den Stabtypen 'Fachwerkstab' und 'Fachwerkstab (nur N)' wird in einem Webinar an einem Beispiel erläutert.

Pręt rozciągany

Pręt rozciągany może przenosić tylko siły rozciągające. Ten typ pręta odpowiada prętowi 'Kratownica (tylko N)', który ulega zniszczeniu pod wpływem siły ściskającej.

Obliczenia konstrukcji ramowej zawierającej pręty rozciągane są wykonywane iteracyjnie: w pierwszym kroku wyznaczane są siły wewnętrzne wszystkich prętów. Jeżeli pręty rozciągane są obciążone ujemną siłą normalną (ściskanie), rozpoczyna się kolejny krok iteracji. Składowe sztywności tych prętów nie są już uwzględniane, ponieważ pręty uległy zniszczeniu. Proces ten jest kontynuowany do momentu, gdy żaden pręt rozciągany nie ulega już zniszczeniu. Na skutek zniszczenia prętów rozciąganych układ może stać się niestateczny.

Pręt ściskany

Pręt ściskany może przenosić tylko siły ściskające. Ten typ pręta odpowiada prętowi 'Kratownica (tylko N)', który ulega zniszczeniu pod wpływem siły rozciągającej. Zniszczenie prętów ściskanych może prowadzić do niestateczności układu.

Pręt wyboczeniowy

Pręt wyboczeniowy odpowiada prętowi typu 'Kratownica (tylko N)', który bez ograniczeń przenosi siły rozciągające, natomiast siły ściskające - tylko do momentu osiągnięcia siły krytycznej. Wartość tej siły wyznaczana jest dla drugiego przypadku Eulera w następujący sposób:

Zastosowanie tego typu pręta często pozwala uniknąć niestateczności, jakie powstają podczas obliczeń nieliniowych według teorii drugiego rzędu lub analizy dużych deformacji w wyniku wyboczenia prętów kratownicy. Po zastąpieniu kratownic prętami wyboczeniowymi (sytuacja zbliżona do rzeczywistości) w wielu przypadkach zostaje zwiększone obciążenie krytyczne.

Kabel

Kable przejmują tylko siły rozciągające. Pozwala to na iteracyjne obliczenia zbiorów kabli według analizy dużych deformacji z uwzględnieniem sił podłużnych i poprzecznych.

Kable są odpowiednie dla modeli, w których mogą wystąpić duże odkształcenia z odpowiednimi zmianami sił wewnętrznych. Do odciągów przy prostych konstrukcjach (na przykład zadaszenia) w zupełności wystarcza zastosowanie prętów rozciąganych.

Wirtualna belka

Ten typ pręta umożliwia zastosowanie właściwości przekrojów dla elementów typu 'Open Web Steel Joists, które Steel Joist Institute zawarł w tabelach określonych jako "Wirtualna belka". Te wirtualne przekroje belek reprezentują zastępcze belki szerokostopowe, które są bardzo zbliżone do powierzchni pasa belki, efektywnego momentu bezwładności i ciężaru. W ten sposób belka zostaje zastąpiona prętem o wirtualnym przekroju. Pozwala to symulować złożone elementy nośne, takie jak kratownica w całym układzie konstrukcyjnym.

Z listy należy wybrać 'Serię' wirtualnej belki.

Następnie można zdefiniować dokładny typ na liście 'Wirtualna belka'.

Die Schaltfläche Wirtualna belka im Abschnitt 'Querschnitt und Material' ermöglicht es, den virtuellen Träger aus der Querschnittbibliothek zu importieren.

Sztywność

Ten typ pręta umożliwia zastosowanie pręta o sztywnościach zdefiniowanych przez użytkownika. Die Steifigkeitskennwerte sind im Dialog 'Neue Stabsteifigkeit' zu definieren (siehe Kapitel Stabsteifigkeiten).

Połączenie

Łącznik jest wirtualnym, bardzo sztywnym prętem o końcach sztywnych lub przegubowych. Do wyboru są cztery możliwości połączenia stopni swobody węzła początkowego i końcowego w sposób 'Sztywny' lub za pomocą 'Przegubu'. Łączniki umożliwiają modelowanie szczególnych sytuacji dla przenoszenia sił i momentów. Siły normalne i tnące lub momenty skręcające i zginające są przy tym przenoszone bezpośrednio z jednego węzła na drugi.

Informacje

Sztywności łączników są zadawane w zależności od danego modelu, tak by nie występowały problemy numeryczne.

Sprężyna

Ein Federstab bietet die Möglichkeit, lineare oder auch nichtlineare Federeigenschaften mit definierbaren Wirkbereichen abzubilden. Für einen Federstab brauchen Sie im Register 'Querschnitt' nur die Stablänge Lz festlegen, keinen Querschnitt: Die Steifigkeit des Stabes ergibt sich aus den Federparametern, die Sie im Dialog 'Neue Stabfeder' definieren (siehe Kapitel Stabfedern).

tłumik

Ein Dämpfer entspricht im Prinzip einem Federstab mit der Zusatzeigenschaft 'Dämpfungskoeffizient'. Dieser Stabtyp erweitert die Möglichkeiten für dynamische Analysen nach dem Zeitverlaufsverfahren.

Wie bei einem Federstab brauchen Sie im Register 'Querschnitt' nur die Stablänge Lz festlegen, keinen Querschnitt. Die Steifigkeit des Stabes ergibt sich aus den Federparametern, die Sie im Dialog 'Neue Stabfeder' definieren (siehe Kapitel Stabfedern). Die Dämpfungseigenschaften können Sie über den Dämpfungskoeffizienten X steuern.

Informacje

Hinsichtlich der Viskoelastizität ähnelt der Stabtyp "Dämpfer" dem Kelvin-Voigt-Modell, das aus dem Dämpfungselement und einer elastischen Feder (beide parallel geschaltet) besteht.

Opcje

In diesem Abschnitt können Sie über die Kontrollfelder weitere Stabeigenschaften festlegen.

Węzły na pręcie

Mit einem oder mehreren Knoten am Stab können Sie den Stab in Segmente gliedern, ohne den Stab zu teilen (siehe Kapitel Węzły ).

Przeguby

Sie können an einem Stab Gelenke anordnen, um die Übertragung von Schnittgrößen an den Endknoten zu steuern (siehe Kapitel Stabendgelenke). W przypadku niektórych typów pręta wprowadzania przegubów jest zablokowane, ponieważ posiadają one już zwolnienia wewnętrzne. Przeguby można przypisać oddzielnie dla 'Początku pręta i' oraz 'Końca pręta j'.

Mimośrody

Exzentrizitäten bieten die Möglichkeiten, den Stab an den Endknoten außermittig anzuschließen (siehe Kapitel Stabexzentrizitäten). Mimośrody można przypisać oddzielnie 'Na początku pręta i' oraz 'Na końcu pręta j'.

Magazyn

Do pręta można przypisać podporę efektywną na całej długości. Die Freiheitsgrade und Federsteifigkeiten sind bei den Lagerbedingungen zu definieren (siehe Kapitel Stablager).

Usztywnienia poprzeczne

Usztywnienia poprzeczne zastosowane w pręcie mają wpływ na jego sztywność deplanacyjną. Sie wirken sich auf die Berechnung mit Wölbkrafttorsion unter Berücksichtigung von sieben Freiheitsgraden aus (siehe Kapitel Stabquersteifen).

Nieliniowość

Prętowi można przypisać nieliniowość. Die nichtlinearen Eigenschaften sind als Stabnichtlinearitäten zu definieren (siehe Kapitel Stabnichtlinearitäten).

Punkty pośrednie wyników

Poprzez zastosowanie punktów pośrednich wyników można kontrolować wyświetlanie w tabeli wyników wzdłuż pręta. Die Teilungspunkte sind im Dialog 'Neuer Stabergebniszwischenpunkt' zu definieren (siehe Kapitel Stabergebniszwischenpunkte).

Informacje

Punkty pośrednie wyników nie mają wpływu na wyznaczanie wartości ekstremalnych ani na graficzny wykres wyników.

Modyfikacje końca

Mit Endmodifikationen können Sie die Geometrie des Stabes an seinen Enden grafisch anpassen. Pozwala to przygotowywać rzuty, redukcje lub skosy dla renderowanego widoku.

Informacje

W przeciwieństwie do mimośrodów pręta, modyfikacje końców nie mają wpływu na obliczenia.

'Verlängerung': Dla początku i końca pręta można zdefiniować 'Wydłużenie'. Ujemna wartość Δ działa jak skrócenie.

'Neigung': Mit einer Neigung können Sie jedes Stabende abschrägen. Możliwe jest wprowadzenie kątów nachylenia względem dwóch osi pręta y i z. Dodatni kąt powoduje obrót zgodnie z ruchem wskazówek zegara względem odpowiedniej osi dodatniej.

Wyłącz z obliczeń

W przypadku zaznaczenia tego pola wyboru pręt wraz z obciążeniem nie będzie uwzględniony w obliczeniach. Umożliwia to analizowanie zmian w zachowaniu konstrukcji w przypadku, gdy określone pręty nie są efektywne. Nie ma wówczas potrzeby usuwania prętów; zachowane zostają również ich obciążenia.

Rozdział nadrzędny