- Cross-sectional area A
- Shear areas Ay und Az with or without transversal shear
- Centroid position yS, zS
- moments of area 2 degrees Iy, Iz, Iyz, Iu, Iv, Ip
- Inclination of principal axes α
- Radii of gyration iy, iz, iyz, iu, iv, ip
- Torsional constant J
- Cross-section weight G and cross-section perimeter U
- Location of the shear center yM, zM
- Warping constants Iω,S, Iω,M
- Max/min cross-section moduli Sy, Sz, Su, Sv und St
- Plastic cross-section moduli Zy,pl, Zz,pl, Zu,pl, Zv,pl
- Stress function according to Prandtl φ
- Derivation of φ with respect to y and z
- Warping ω
SHAPE-MASSIVE | Section Properties

This technical article addresses the direct deformation analysis of reinforced concrete beams considering the long-term effects of creep and shrinkage. The direct calculation according to Eurocode 2 (EN 1992-1-1, Section 7.4.3) is explained using a single-span beam. Particular emphasis is placed on tension stiffening, behavior in the cracked state based on the distribution factor (damage parameter), and consideration of shrinkage and creep behavior.

Describing the procedure for the serviceability limit state design of a floor slab made of steel fiber-reinforced concrete. This article shows how to perform the corresponding design for the SLS by means of the iteratively determined FEA results.

Steel-fiber-reinforced concrete is mainly used nowadays for industrial floors or hall floors, foundation plates with low loads, basement walls, and basement floors. Since the publication in 2010 of the first guideline about steel-fiber-reinforced concrete by the German Committee for Reinforced Concrete (DAfStb), a structural engineer can use standards for the design of the steel fiber-reinforced concrete composite material, which makes the use of fiber-reinforced concrete increasingly popular in construction. This article describes the nonlinear calculation of a foundation plate made of steel fiber-reinforced concrete in the ultimate limit state with the FEA software RFEM.

Steel-fiber-reinforced concrete is mainly used nowadays for industrial floors or hall floors, foundation plates with low loads, basement walls, and basement floors. Since the publication in 2010 of the first guideline about steel-fiber-reinforced concrete by the German Committee for Reinforced Concrete (DAfStb), a structural engineer can use standards for the design of the steel fiber-reinforced concrete composite material, which makes the use of fiber-reinforced concrete increasingly popular in construction. This article explains the individual material parameters of steel-fiber-reinforced concrete and how to deal with these material parameters in the FEM program RFEM.

- Cross-section modeling using surfaces, openings, and point areas (reinforcements) limited by polygons
- Automatic or individual arrangement of stress points
- Extensible library of concrete, steel, and reinforcing steel materials
- Cross-section properties of reinforced concrete and composite cross-sections
- Stress analysis with yield hypothesis according to von Mises and Tresca
- Reinforced concrete design according to:
-
DIN 1045-1:2008-08
-
DIN 1045:1988-07
-
ÖNORM B 4700: 2001-06-01
-
EN 1992-1-1:2004
-
- For the design according to EN 1992-1-1:2004, the following National Annexes are available:
-
DIN EN 1992-1-1/NA:2013-04 (Germany)
-
NEN-EN 1992-1-1/NA:2011-11 (Netherlands)
-
CSN EN 1992-1-1/NA:2006-11 (Czech Republic)
-
ÖNORM B 1992-1-1:2011-12 (Austria)
-
UNE EN 1992-1-1/NA:2010-11 (Spain)
-
EN 1992-1-1 DK NA:2007-11 (Denmark)
-
SIST EN 1992-1-1:2005/A101:2006 (Slovenia)
-
NF EN 1992-1-1/NA:2007-03 (France)
-
STN EN 1992-1-1/NA:2008-06 (Slovakia)
-
SFS EN 1992-1-1/NA:2007-10 (Finland)
-
BS EN 1992-1-1:2004 (United Kingdom)
-
SS EN 1992-1-1/NA:2008-06 (Singapore)
-
NP EN 1992-1-1/NA:2010-02 (Portugal)
-
UNI EN 1992-1-1/NA:2007-07 (Italy)
-
SS EN 1992-1-1/NA:2008 (Sweden)
-
PN EN 1992-1-1/NA:2008-04 (Poland)
-
NBN EN 1992-1-1 ANB:2010 (Belgium)
-
NA to CYS EN 1992-1-1:2004/NA:2009 (Cyprus)
-
BDS EN 1992-1-1:2005/NA:2011 (Bulgaria)
-
LST EN 1992-1-1:2005/NA:2011 (Lithuania)
-
SR EN 1992-1-1:2004/NA:2008 (Romania)
-
- In addition to the National Annexes (NA) listed above, you can also define a specific NA, applying user‑defined limit values and parameters.
- Reinforced concrete design for stress-strain distribution, available safety, or direct design
- Results of reinforcement list and total reinforcement area
- Printout report with option to print a short form

All results can be evaluated and visualized in an appealing numerical and graphical form. Selection functions facilitate the targeted evaluation.
The printout report corresponds to the high standards of RFEM 6 and RSTAB 9. Modifications are updated automatically. Furthermore, you can print the reduced report in a short form, including all relevant data and a user-defined cross-section graphic.

- Stresses σ and strains ε of concrete and reinforcement without considering concrete tensile strength (state II)
- Ultimate limit state design (existing safety) or design of defined internal forces
- Location of the neutral axis α0, y0,N, z0,N
- Curvatures ky, kz
- strain in the zero point ε0 and governing strains at the compression edge ε1 and at the tension edge ε2
- Governing steel strain ε2s

- Normal stresses σx due to axial force and bending
- Shear stresses τ due to shear force and torsion
- Equivalent stresses σv compared to limit stress
- Stress ratios related to equivalent stresses
- Normal stress σx due to unit axial force N
- Shear stress τ due to unit shear forces Vy, Vz, Vu, Vv
- Normal stress σx due to unit momentsMy, Mz, Mu, Mv
Recommended Products for You