Verwendete Symbole
L | Trägerlänge |
b | Trägerbreite |
h | Trägerhöhe |
E | Elastizitätsmodul |
G | Schubmodul |
Iz | Trägheitsmoment um die schwache Achse |
IT | Torsionsträgheitsmoment |
az | Abstand des Lastangriffs vom Schubmittelpunkt |
Gabelgelagerter Einfeldträger ohne Zwischenabstützung
L | 18 | m |
b | 160 | mm |
h | 1.400 | mm |
az | 700 | mm |
Iz | 477.866.667 | mm4 |
IT | 1.773.842.967 | mm4 |
E0,05 | 10.400 | N/mm² |
G0,05 | 540 | N/mm² |
Für den gabelgelagerten Einfeldträger ohne Zwischenabstützung (siehe Bild 01) resultiert bei einem Lastangriff an der Oberseite die Ersatzstablänge zu:
Die Faktoren a1 und a2 können Bild 02 entsprechend dem Momentenverlauf entnommen werden.
Das kritische Biegemoment kann danach wie folgt berechnet werden:
Auf eine Erhöhung des Produktes der 5-%-Quantilen der Steifigkeitskennwerte wegen der Homogenisierung von Trägern aus Brettschichtholz wird in diesem Beispiel verzichtet.
Für komplexere Systeme kann es von Vorteil sein, die kritischen Lasten, Momente beziehungsweise Spannungen mittels Eigenwertlöser zu bestimmen. Das Zusatzmodul RF-/FE-BGDK, das auf der Methode der finiten Elemente basiert, kann für die Berechnung der Stabilitätslasten von Stabsätzen benutzt werden. Dabei wird ein elastisches Materialverhalten bei geometrisch nichtlinearem Verhalten angenommen. Als Ergebnis für den Holzbau ist der kritische Lastfaktor von Bedeutung. Dieser gibt an, mit welchem Faktor die Belastung multipliziert werden kann, bevor das System instabil wird.
Für dieses Beispiel wird der Träger mit einer Einheitslast von 1 kN/m belastet. Das Biegemoment ergibt sich hierfür zu:
Da der untere Quantilwert des kritischen Moments bestimmt werden soll, sind für die Steifigkeitskennwerte E und G die 5-%-Quantile zu verwenden. Dazu muss ein benutzerdefiniertes Material erstellt werden, welches nur im Zusatzmodul Anwendung findet. Für dieses Material sind dann die Steifigkeitskennwerte E und G zu ersetzen.
Im Anschluss sind die Gabellagerungen zu definieren. Hierbei ist darauf zu achten, dass auch der Freiheitsgrad φZ zu lösen ist.
Damit die Last an der Oberseite des Trägers wirkt, ist diese exzentrisch zu setzen.
In den Details muss die Reduzierung der Steifigkeit durch den Teilsicherheitsbeiwert γM noch deaktiviert werden (siehe Bild 07). Alternativ kann auch direkt im benutzerdefinierten Material der Teilsicherheitsbeiwert zu 1,0 gesetzt werden.
Aus der Berechnung ergibt sich ein kritischer Lastfaktor von 9,3333 (siehe Bild 08). Wird die Belastung nun mit diesem Faktor multipliziert, wird ein Ausweichen des Obergurtes stattfinden und das System wird instabil.
Für das kritische Moment folgt:
Dieses stimmt sehr gut mit dem Ergebnis der analytischen Lösung überein.
Gabelgelagerter Einfeldträger mit Zwischenabstützung
Der Träger wird nun in den Drittelspunkten durch eine Aussteifungskonstruktion seitlich unverschieblich gehalten.
Da der Momentenverlauf im mittleren Bereich nahezu konstant ist, wird für die Kipplängenbeiwerte in guter Näherung ein konstanter Momentenverlauf angenommen. Der Wert a1 ist somit 1,0 und a2 gleich 0. Es ergibt sich die effektive Länge mit L = 6,0 m zu
und das kritische Moment zu
Aus dem Eigenwertlöser ergibt sich unter Berücksichtigung der Zwischenabstützungen im Schubmittelpunkt (siehe Bild 10) ein kritischer Lastfaktor von 26,1735.
Für das kritische Moment folgt:
Wirkt die Zwischenabstützung an der Oberseite (siehe Bild 11) wird der kritische Lastfaktor größer (32,5325), da diese Position sich günstiger auf das Kippverhalten des Trägers auswirkt.
Die analytische Näherung ist auch für diesen Fall relativ gut.
Alternative Untersuchung am Flächenmodell
Die Verzweigungslastfaktoren können auch mit RFEM und dem Zusatzmodul RF-STABIL berechnet werden. Hierfür ist es notwendig, den Träger als orthotrope Fläche zu modellieren. Die Ergebnisse aus RF-STABIL stimmen sehr gut mit der Stabberechung aus RF-/FE-BGDK überein. Die erste Eigenform sowie der zugehörige Verzweigungslastfaktor sind in Bild 12 dargestellt.
System | Mcrit analytisch | Mcrit RF-/FE-BGDK | Mcrit RF-STABIL |
---|---|---|---|
ohne Zwischenabstützung | 375,42 kNm | 378,00 kNm | 378,55 kNm |
mit Zwischenabstützung im Schubmittelpunkt | 1.142,41kNm | 1.060,03 kNm | 1.085,81 kNm |
mit Zwischenabstützung am Obergurt | - | 1.317,57 kNm | 1.455,98 kNm |
Für die meisten Fälle ist es wohl ausreichend, das kritische Biegemoment Mcrit beziehungsweise die kritische Biegespannung σcrit mit den analytischen Gleichungen aus der Literatur zu bestimmen. Für Sonderfälle wurden zwei Möglichkeiten aufgezeigt, wie dies mithilfe von Dlubal-Programmen umgesetzt werden kann. Während mit dem Zusatzmodul RF-/FE-BGDK,die Berechnung mittels Stäben erfolgt, können mit dem Zusatzmodul RF-STABIL noch komplexere Stabilitätsbetrachtungen durchgeführt werden. Als Beispiel sei hier eine Gabellagerung genannt, welche nicht über die komplette Trägerhöhe angeordnet ist. Dies lässt sich mit einem Flächenmodell sehr bequem untersuchen.
- Biegedrillknicken im Holzbau | Theorie
- Biegedrillknicken im Holzbau | Beispiele 2
- RFEM 5-Zusatzmodul RF-FE-BGDK
- RFEM 5-Zusatzmodul RF-STABIL