9996x
001647
2020-07-17

Vuelco lateral en estructuras de madera | Ejemplos 1

El artículo Vuelco lateral en la construcción en madera | La teoría explica los antecedentes teóricos para la determinación analítica del momento crítico de flexión Mcrit o la tensión crítica de flexión σcrit para el pandeo lateral de una viga sometida a flexión. El siguiente artículo utiliza ejemplos para verificar la solución analítica con el resultado del análisis de los valores propios.

Símbolos utilizados

L Longitud de la viga
b Anchura de la viga
h Altura de la viga
E Módulo de elasticidad
Módulo de cortante
Iz momento de inercia respecto al eje débil
IT Módulo de torsión
az distancia de aplicación de carga desde el centro de cortante

Viga de un vano con coacción lateral y torsional y sin apoyo intermedio

L 18 m
b 160 mm
h 1.400 mm
az 700 mm
Iz 477.866.667 mm4
IT 1.773.842.967 mm4
E0,05 10.400 N/mm²
0,05 540 N/mm²

Für den gabelgelagerten Einfeldträger ohne Zwischenabstützung (siehe Bild 01) resultiert bei einem Lastangriff an der Oberseite die Ersatzstablänge zu:

Die Faktoren a1 und a2 können Bild 02 entsprechend dem Momentenverlauf entnommen werden.

El momento crítico de flexión se puede calcular de la siguiente manera:

Auf eine Erhöhung des Produktes der 5-%-Quantilen der Steifigkeitskennwerte wegen der Homogenisierung von Trägern aus Brettschichtholz wird in diesem Beispiel verzichtet.

Für komplexere Systeme kann es von Vorteil sein, die kritischen Lasten, Momente beziehungsweise Spannungen mittels Eigenwertlöser zu bestimmen. Das Zusatzmodul RF-/FE-BGDK, das auf der Methode der finiten Elemente basiert, kann für die Berechnung der Stabilitätslasten von Stabsätzen benutzt werden. Dabei wird ein elastisches Materialverhalten bei geometrisch nichtlinearem Verhalten angenommen. Als Ergebnis für den Holzbau ist der kritische Lastfaktor von Bedeutung. Dieser gibt an, mit welchem Faktor die Belastung multipliziert werden kann, bevor das System instabil wird.

Für dieses Beispiel wird der Träger mit einer Einheitslast von 1 kN/m belastet. Das Biegemoment ergibt sich hierfür zu:

Da der untere Quantilwert des kritischen Moments bestimmt werden soll, sind für die Steifigkeitskennwerte E und G die 5-%-Quantile zu verwenden. Dazu muss ein benutzerdefiniertes Material erstellt werden, welches nur im Zusatzmodul Anwendung findet. Für dieses Material sind dann die Steifigkeitskennwerte E und G zu ersetzen.

Im Anschluss sind die Gabellagerungen zu definieren. Hierbei ist darauf zu achten, dass auch der Freiheitsgrad φZ zu lösen ist.

Damit die Last an der Oberseite des Trägers wirkt, ist diese exzentrisch zu setzen.

In den Details muss die Reduzierung der Steifigkeit durch den Teilsicherheitsbeiwert γM noch deaktiviert werden (siehe Bild 07). Alternativ kann auch direkt im benutzerdefinierten Material der Teilsicherheitsbeiwert zu 1,0 gesetzt werden.

Aus der Berechnung ergibt sich ein kritischer Lastfaktor von 9,3333 (siehe Bild 08). Wird die Belastung nun mit diesem Faktor multipliziert, wird ein Ausweichen des Obergurtes stattfinden und das System wird instabil.

Für das kritische Moment folgt:

Dieses stimmt sehr gut mit dem Ergebnis der analytischen Lösung überein.

Gabelgelagerter Einfeldträger mit Zwischenabstützung

Der Träger wird nun in den Drittelspunkten durch eine Aussteifungskonstruktion seitlich unverschieblich gehalten.

Da der Momentenverlauf im mittleren Bereich nahezu konstant ist, wird für die Kipplängenbeiwerte in guter Näherung ein konstanter Momentenverlauf angenommen. Der Wert a1 ist somit 1,0 und a2 gleich 0. Es ergibt sich die effektive Länge mit L = 6,0 m zu

und das kritische Moment zu

Aus dem Eigenwertlöser ergibt sich unter Berücksichtigung der Zwischenabstützungen im Schubmittelpunkt (siehe Bild 10) ein kritischer Lastfaktor von 26,1735.

Für das kritische Moment folgt:

Wirkt die Zwischenabstützung an der Oberseite (siehe Bild 11) wird der kritische Lastfaktor größer (32,5325), da diese Position sich günstiger auf das Kippverhalten des Trägers auswirkt.

Die analytische Näherung ist auch für diesen Fall relativ gut.

Alternative Untersuchung am Flächenmodell

Die Verzweigungslastfaktoren können auch mit RFEM und dem Zusatzmodul RF-STABIL berechnet werden. Hierfür ist es notwendig, den Träger als orthotrope Fläche zu modellieren. Die Ergebnisse aus RF-STABIL stimmen sehr gut mit der Stabberechung aus RF-/FE-BGDK überein. Die erste Eigenform sowie der zugehörige Verzweigungslastfaktor sind in Bild 12 dargestellt.

Sistema Mcrit analytisch Mcrit RF-/FE-BGDK Mcrit RF-STABIL
sin apoyo intermedio 375,42 kNm 378,00 kNm 378,55 kNm
con apoyo intermedio en el centro de cortante 1.142,41kNm 1.060,03 kNm 1.085,81 kNm
mit Zwischenabstützung am Obergurt - 1.317,57 kNm 1.455,98 kNm


Para la mayoría de los casos, probablemente sea suficiente determinar el momento crítico de flexión Mcrit o la tensión crítica de flexión σcrit utilizando las ecuaciones analíticas de la bibliografía. Para casos especiales, se mostraron dos opciones sobre cómo se puede implementar utilizando los programas de Dlubal. Während mit dem Zusatzmodul RF-/FE-BGDK,die Berechnung mittels Stäben erfolgt, können mit dem Zusatzmodul RF-STABIL noch komplexere Stabilitätsbetrachtungen durchgeführt werden. Un ejemplo es una coacción lateral y torsional que no está dispuesta en toda la altura de la viga. Esto se puede analizar fácilmente con un modelo de superficies.


Autor

El Sr. Rehm es responsable del desarrollo de productos para estructuras de madera y proporciona soporte técnico a los clientes.

Enlaces
Descargas


;