- 完全集成在 RFEM/RSTAB,可以导入所有相关的荷载
- 按照弹性-弹性方法进行带有翘曲扭转的一般应力计算
- 平面多杆件的屈曲和弯扭屈曲稳定性验算
- 计算临界荷载系数以及 MKi 或者 NKi (此数值可以在 RF-/LTB 中弹性/塑性验算时使用)
- 任意截面的弯扭屈曲验算(包括 SHAPE-THIN 截面)
- 杆件和多杆件受扭作用验算(例如吊车梁)
- 选择计算承载力系数(临界荷载系数)
- 在渲染的截面上显示振型和扭转形状
- 大量辅助工具计算应力蒙皮和旋转约束(例如:压型板、檩条、支撑)
- 计算单个弹簧,例如:端头板的翘曲弹簧或者柱子的转动弹簧
- 图形选择截面上荷载作用位置(上翼缘、重心、下翼缘或者任意点)
- 在截面上自由设置偏心的点支座和线支座
- 通过特征值分析计算初始转动或者初弯曲值的大小
- 在过渡区由特定的翘曲释放定义相应的翘曲条件
RF-FE-LTB | 产品特性

在钢结构节点设计的承载能力极限状态中,您可以更改焊缝的极限塑性应变。

用户可以使用“底板”组件设计以及锚固锚固后的锚固节点。 在这种情况下,板件、焊缝、锚固以及钢筋和混凝土之间的相互作用都会被计算在内。

导入对话框"考虑受力分析"显示的有限元应力分析法 (FSM) als 3D-Grafiken lassen的考虑。
.png?mw=600&hash=49b6a289915d28aa461360f7308b092631b1446e)
使用 RFEM 的钢结构节点模块,您可以使用有限元模型对钢结构节点进行分析。 有限元模型在后台自动生成,可以通过简单地输入组件来控制。

使用“材料非线性”模块,可以在 RFEM 中考虑材料的非线性,例如塑性各向同性、塑性正交各向异性、各向同性损伤。

使用“施工阶段分析 (CSA)”模块可以在 RFEM 中考虑施工过程对结构(杆件、面和实体结构)的影响。

使用“时变分析 (TDA)”模块,可以在 RFEM 中考虑杆件和面的时变材料行为。 长期效应例如徐变、收缩和龄期会影响内力的分布,具体取决于结构。

“结构找形分析”模块可以找到受轴力作用的杆件和张力作用的面模型的最优形状。

使用 Pushover 分析模块,可以分析地震对建筑物的影响,从而评估建筑物的抗震能力。

使用 RFEM 的建筑模型模块,您可以使用楼层对建筑进行定义和操作。 之后,楼层可以通过多种方式进行调整。 有关楼层和整个模型(重心)的信息会显示在表格和图形中。

“应力-应变分析”模块用于执行一般应力分析,通过计算现有的实际应力,然后与构件的极限应力进行比较。

现代化的三维结构分析和设计软件适用于梁结构的静力和动力分析,以及混凝土、钢、木结构和其他材料的设计。

“翘曲扭转 (7自由度)”模块允许在计算杆件时将截面翘曲作为额外的一个自由度进行考虑。

地震会显著影响建筑物的变形行为。 通过 pushover 分析可以对建筑物的变形行为进行分析,预测其地震反应。 使用“静力弹塑性分析”模块,可以分析地震对建筑物的影响,从而评估该建筑物的抗震能力。

优化和成本/CO2 排放估算模块通过粒子群优化算法 (PSO) 的人工智能 (AI) 技术为参数化模型和块寻找合适的参数,使其符合通用的优化准则。 此外,该模块还通过为结构模型的每种材料指定单位成本和排放量来估算模型的成本或二氧化碳的排放量。

此外,该模块还通过为结构模型的每种材料指定单位成本和排放量来估算模型的成本或二氧化碳的排放量。

用于对包含板、墙、壳、杆件(梁)、实体和接触单元的平面和空间结构体系进行有限元分析的结构工程分析软件

“混凝土设计”模块可以按照国际规范进行各种设计验算。 可以设计杆件、面和柱,以及进行冲切设计和变形分析。

使用 Aluminium Design 模块可以按照不同的规范对铝合金杆件进行承载能力极限状态和正常使用极限状态设计。

使用 Aluminium Design 模块可以按照不同的规范对铝合金杆件进行承载能力极限状态和正常使用极限状态设计。

“木结构设计”模块可以按照不同规范对木杆件进行承载能力极限状态、正常使用极限状态设计和极限状态防火设计。