膜结构找形分析以及裁剪设计
膜结构找形裁剪推荐产品
过时产品

![膜结构的基本形状[1]](/zh/webimage/009595/2419509/01-png.png?mw=512&hash=fe42d914122820fe3c92f9595d4d91afce8a2c07)

本文将演示如何使用 RFEM 和 RWIND 对防风结构进行结构设计。

与附加模块 RF-FORM-FINDING (RFEM 5) 相比,在 RFEM 6 的结构找形模块中增加了以下新功能:
- 在一个荷载工况中指定所有找形荷载边界条件
- 将找形结果存储为初始状态,用于进一步的模型分析
- 通过组合向导将找形分析得出的初始状态自动分配给一个设计状况的所有荷载情况
- 杆件的额外找形几何边界条件(无应力长度、最大竖向垂度、低点竖向垂度)
- 杆件的附加找形荷载边界条件(杆件中的最大力、杆件中的最小力、拉力水平分量、i 端拉力、j 端拉力、i 端最小拉力、j 端最小拉力)
- 材料库中包括材料类型“织物”和“薄膜”
- 在一个模型中平行进行结构找形分析
- 与施工阶段分析 (CSA) 模块结合连续建立找形状态的模拟

一旦激活“基本数据”中的找形模块,与杆件、面和实体产生的找形荷载共同作用时,类荷载目录 该工况为预应力荷载工况。 “找形分析”由此扩展为针对整个模型进行找形分析,包括其中定义的所有杆件、面和实体单元。 可以通过使用找形荷载特殊定义和常规荷载定义来对整个模型中的相关杆件和膜单元进行找形。 该找形荷载描述的是找形分析后构件的预期状态。 常规荷载描述了整个结构体系的外部荷载。

您确切知道找形是如何进行的吗? 首先,通过迭代计算,对类别为“预应力”的荷载工况进行找形分析,将初始网格几何形状移动到最佳平衡位置。 为此,软件使用了 Bletzinger 和 Ramm 教授的更新参考策略 (URS) 方法。 该技术的特点是平衡形状几乎完全符合最初指定的找形边界条件(垂度、力和预应力)。
URS 的积分功能不仅可以描述构件的预期荷载或构件垂度。 并且例如可以通过相应的单元荷载来考虑自重或气压。
所有这些选项使计算内核具有计算平面或旋转对称几何形状处于力平衡状态下的反碎裂和同断裂形状的潜力。 为了能够分别或同时在一个环境中使用这两种找形分析,在计算中提供了两种找形力矢量:
- 张力法 - 空间找形力向量描述
- 投影法 - 在投影平面上定义找形力矢量,并且投影平面位置固定,用于锥形几何形状

找形分析给出的结构模型为“预应力荷载工况”, 该荷载工况显示从初始输入位置到变形结果中找正的几何形状的位移。 在力或基于应力的结果(杆件和面的内力、实体应力、气压等)中,它会保持现有状态。 对于形状几何分析,程序提供了一个二维等高线图,输出的绝对高度和一个倾角图,用于显示边坡情况。
现在将对整个模型进行进一步的计算和结构分析。 为此,程序将具有逐单元应变的找形分析几何尺寸传递到普遍适用的初始状态中。 现在可以在荷载工况和荷载组合中使用它。