钢索和张拉结构的解决方案
绳索和绳索网络结构推荐产品
我叫Mia: 您的全天候人工智能助手
有什么可以帮助你的?

在 RFEM 6 的钢结构设计模块中提供了三种类型的弯矩框架(普通、中间和特殊)。 按照 AISC 341-22 进行抗震设计结果,分为两部分: 杆件要求和连接要求。

使用 RFEM 6 中的钢结构设计模块现在可以根据 AISC 341-16 和 AISC 341-22 进行抗震设计。 当前抗震系统(SFRS)有五种类型。

在 RFEM 6 的钢结构设计模块中提供了三种类型的弯矩框架(普通、中间和特殊)。 按照 AISC 341-16 进行抗震设计结果,分为两部分: 杆件要求和连接要求。

RFEM 6 的钢结构设计模块现在可以根据 AISC 341-16 设计弯矩框架。 抗震验算的结果分为两部分: 杆件要求和连接要求。 本文主要介绍连接强度要求。 下面介绍了 RFEM 与 AISC 抗震设计手册的计算结果比较。

在 RFEM 6 中,建筑模型中的荷载传递面和楼板之间存在分层控制。 也可以设计出由荷载传递面组成的墙体,例如幕墙。

生成剪力墙和深梁时,不仅可以分配面和单元,还可以生成杆件。

建筑模型的计算分两个阶段进行:
- 全局模型的全局三维计算,其中楼板作为刚性平面(刚性板)或作为受弯板
- 对个别楼层进行局部二维计算
三维计算和二维计算的结果可以在同一个模型中进行整合。 因此无需在板的 3D 模型和 2D 模型之间进行切换。 用户只需使用一个模型,不仅可以节省宝贵的时间,还可以避免在 3D 模型和 2D 模型之间手动交换数据时可能出现的错误。
模型中的竖向面可分为剪力墙和洞口过梁。 程序会自动从这些墙对象生成内部结果杆件,然后可以根据在 RFEM 6 的混凝土设计模块中选定的规范进行设计。

有以下几种建模工具可供选择:
- 竖线
- 柱
- 墙
- 梁杆件
- 矩形天花板
- 多边形楼板
- 天花板上的矩形洞口
- 多边形天花板洞口
用户可以使用该功能在空间中定义平面单元(例如背景层),并在空间中创建多单元网格。