非线性系统的变形能力分析
总数: 3
静力弹塑性分析(Pushover) | 产品特性
- 考虑钢结构塑性标准铰(FEMA 356,EN 1998-3)和材料的非线性行为(砌体结构、钢结构 - 双线性、用户自定义工作曲线)
- 直接从荷载工况或组合中导入质量,以便施加恒定的竖向荷载
- 用户定义的考虑水平荷载(振型或沿质量高度方向均匀分布的荷载)
- 确定计算的极限准则的 Pushover 曲线(倒塌或变形极限)
- 将 Pushover 曲线转换为承载力谱(ADRS 格式,单自由度体系)
- 承载力谱按照规范 EN 1998‑1:2010 + A1:2013 双线性化处理
- 将应用的反应谱转换为所需的反应谱(格式 ADRS)
- 按照 EC 8 确定目标位移(N2 法按照 Fahfar 2000)
- 输出容量和所需谱的图形比较
- 以图形方式评估预定义塑性铰的验收标准
- 显示目标位移迭代计算中所用值的结果
- 不同荷载水平下全部结构分析结果的访问权限
静力弹塑性分析(Pushover) | 输入
Pushover 分析属于荷载组合中新定义的分析类型。 在这里您可以选择荷载水平分布和方向、选择恒定荷载、为计算目标位移选择所需的反应谱,以及为 Pushover 分析量身定制的 Pushover 设置。
在 Pushover 分析设置中,可以修改水平荷载的增量,并指定分析的停止条件。 此外在迭代确定目标位移时可以很容易地调整精度。
静力弹塑性分析(Pushover) | 计算和结果
在计算过程中,水平荷载会以荷载增量的形式增加。 对每个荷载步都进行静力非线性分析,直到达到指定的极限条件。
Pushover 分析的结果是广泛的。 一方面,对结构进行变形行为分析。 这可以通过系统的力-变形曲线(承载力曲线)来表示。 另一方面,在 ADRS(加速度-位移反应谱)对话框中可以显示反应谱效应。 根据这两个结果,程序会自动确定目标位移。 计算过程可以通过图形和表格方式进行评估。
然后可以以图形方式对各个验收准则进行评估和评估(目标位移步,以及所有其他荷载步)。 对于单独的荷载步,静力分析的结果也可以显示。
计算价格

总金额 1,460.00 USD
该价格适用于United States。

借助 RF-/STEEL EC3,您可以使用 RFEM 和 RSTAB 中的名义温度-时间曲线。 该程序采用的是标准时间温度曲线(ETK)、外部火灾曲线和碳氢化合物火灾曲线。 此外,程序还提供了直接指定钢材最终温度的选项。

本文探讨了在建模和设计中考虑节点与结构相互作用的重要性以及如何在 RFEM 6 中进行考虑。

概述了抗震分析的基本方法,介绍了它们的原理和应用,以及在哪些情况下使用它们的效率更高

面之间的焊缝应力可以使用 RFEM 6 中的应力-应变分析模块进行计算。 此外,可以输入根据相关规范确定的应力极限值,以确定焊缝的应力比。 本文将通过两个来自 AISC 第 1 卷的示例,按照规范 [1] 对角焊缝设计进行说明: 设计举例 [2].

在钢结构节点设计的承载能力极限状态中,您可以更改焊缝的极限塑性应变。

用户可以使用“底板”组件设计以及锚固锚固后的锚固节点。 在这种情况下,板件、焊缝、锚固以及钢筋和混凝土之间的相互作用都会被计算在内。

导入对话框"考虑受力分析"显示的有限元应力分析法 (FSM) als 3D-Grafiken lassen的考虑。