导入对话框"考虑受力分析"显示的有限元应力分析法 (FSM) als 3D-Grafiken lassen的考虑。

对于四排和多轴弯曲应力的端板刚性连接设计比较困难,因为没有官方的设计方法。

杆件在荷载作用下的弹性变形遵循应力-应变屈克定律。 它们是可逆的: 释放槽后,构件将恢复到原始形状。 然而,塑性变形会导致不可逆的变形。 通常塑性应变远大于弹性应变。 对于延性材料(例如钢)的塑性应力,当硬化时变形增加,就会产生屈服效应。 它们会导致永久变形,在极端情况下还会导致结构构件的损坏。

模块 RF-/FRAME-JOINT Pro 能够按照规范 DIN 18800 或者欧洲规范 3 设计框架节点。 当涉及到非标准化连接或者要更深入的了解连接以及其性质时,建议节点作为面建模。 接下来就展示如何按原则建这样的模型......
![膜结构的基本形状[1]](/zh/webimage/009595/2419509/01-png.png?mw=512&hash=fe42d914122820fe3c92f9595d4d91afce8a2c07)
本文着重介绍了膜结构设计的一些具体方面,例如找形和生成裁剪式样。 设计这些结构的一个重要步骤是找到合适的预应力形状并生成裁剪式样。 本文简要介绍了膜结构设计中的两个基本过程。 目的是对其物理性质进行说明,并结合示例进行阐述。

实体应力的结果可以在有限元中显示为彩色的三维点。
.png?mw=512&hash=ea9bf0ab53a4fb0da5c4ed81d32d53360ab2820c)
RFEM 中节点自由度数目不再是全局计算参数( 3D 模型中每个网格节点 6 个自由度,在翘曲扭转分析中为 7 个自由度)。 每个节点通常被认为有不同数量的自由度,从而在计算中导致方程的数目是可变的。
这种修改可以提高计算速度,特别是对于可以显著简化结构体系的模型(例如桁架和膜结构)。

RFEM 和 RSTAB 模型可以另存为 3D glTF 模型(*.glb 和 *.glTF 格式)。 然后在谷歌或 Baylon 的 3D 查看器中详细查看。 戴上虚拟现实眼镜(例如 Oculus)可以“漫步”在结构中。
用户可以按照说明书通过 JavaScript 将 3D glTF 模型集成到自己的网站中(例如在德儒巴网站下载结构分析模型): “在网络和 AR 中轻松显示交互式 3D 模型” .

使用视图选项“相机飞行模式”,您可以在 RFEM 和 RSTAB 结构模型中飞行。 使用键盘可以控制飞行的方向和速度。 此外,还可以将在结构模型中的飞行过程保存为视频。