RFEM 和 RSTAB 是功能强大的软件,可以帮助结构工程师们进行现代土木工程设计。 这个简短的介绍将帮助您了解软件的基本功能。
用户使用手册
RFEM 6 / RSTAB 9 | 入门

利用迭代计算得到的有限元结果对钢纤维混凝土底板进行正常使用极限状态设计的说明。 本文介绍了如何利用迭代计算得到的有限元结果进行正常使用极限状态设计。

目前钢纤维混凝土主要用于工业地板或大空间室内地板,低应力基础底板,地下室墙体和地下室地板。 自从德国钢筋混凝土委员会(DAfStb)在 2010 年发布了第一部关于钢纤维混凝土的规范以来,结构工程师可以使用规范来设计钢纤维混凝土复合材料,纤维混凝土在建筑领域的应用越来越广泛。 本文介绍了如何使用有限元结构分析软件 RFEM 对钢纤维混凝土基础板进行承载能力极限状态的非线性计算。

在对上面有砌体墙的钢筋混凝土肋进行建模时,如果没有正确考虑砌体的结构特性,并且砌体墙和下部梁之间的连接建模不够准确,则可能会导致肋的肋设计不足。 Dieser Artikel soll sich mit dieser Problematik und den möglichen Modellierungen einer solchen Konstruktion auseinandersetzen. Im Beispiel wird die Bewehrung rein aus den Schnittgrößen und ohne jegliche konstruktive Mindestbewehrung ermittelt.

目前钢纤维混凝土主要用于工业地板或大空间室内地板,低应力基础底板,地下室墙体和地下室地板。 自从德国钢筋混凝土委员会(DAfStb)在 2010 年发布了第一部关于钢纤维混凝土的规范以来,结构工程师可以使用规范来设计钢纤维混凝土复合材料,纤维混凝土在建筑领域的应用越来越广泛。 在本文中将介绍钢纤维混凝土的各项材料参数,以及如何在有限元结构分析软件 RFEM 中处理这些材料参数。

“材料非线性”模块包括了混凝土结构构件的 | “各向异性损伤”材料模型。 使用该材料模型,可以考虑杆件、面和实体的混凝土损伤。
对于应力-应变图,您可以有三种方式来定义,它们分别是通过表格定义,使用参数生成,以及使用规范中的预定义参数。 此外,还可以考虑拉伸刚化效应。
对于钢筋,可以选择两种非线性材料模型, | 它们是“各向同性 | 塑性(杆件)”和 | “各向同性 | 非线性弹性(杆件)”。
此外,还可以通过最近发布的“静力分析 | 徐变与收缩(线性)”分析类型 | 来考虑徐变和收缩效应。 徐变通过增加混凝土的变形(通过一个因子 1+phi 拉伸应力-应变曲线)来考虑,而收缩则通过在分析前就给混凝土施加一个初始的变形(预应变)来考虑。 如果需要进行更精确的分析,您可以使用“时变分析(TDA)”的模块。

在混凝土设计中,可以根据不同设计状况在表格中显示配筋结果。