La qualità della mesh computazionale gioca un ruolo cruciale nell'accuratezza dei risultati della simulazione, specialmente con approcci di discretizzazione di ordine inferiore. Anche un singolo elemento distorto può compromettere l'intero calcolo. Sebbene le griglie strutturate offrano vantaggi, sono limitate nella rappresentazione di geometrie complesse. Opzioni più flessibili includono mesh non strutturate estruse da esaedri o mesh tetraedriche non strutturate, sebbene queste ultime spesso pongano problemi nei metodi per volumi finiti.
Gli approcci alle soluzioni includono mesh ibride, in cui gli elementi strutturati sono utilizzati vicino alla superficie e combinati con mesh non strutturate all'interno, nonché mesh poliedriche e griglie gerarchiche basate su octree. La strategia di mesh può essere adattata al contorno o incorporata, a seconda del metodo implementato.
I criteri di qualità variano in base al metodo: per i metodi ai volumi finiti, l'angolo tra la faccia della cella e la linea che collega i baricentri della cella è critico, mentre per i metodi agli elementi finiti, il determinante della matrice Jacobiana è essenziale. Le simulazioni RANS consentono mesh più grossolane con coefficienti di progressione più grandi (1,10-1,20), mentre le simulazioni LES richiedono coefficienti inferiori a 1,05.
Per verificare l'indipendenza della mesh, sono necessari studi a griglia con almeno una mesh raffinata. È necessario utilizzare impostazioni del modello e condizioni al contorno identiche e la qualità della mesh deve soddisfare gli standard del software CFD, del risolutore e dei modelli di turbolenza. L'estrapolazione di Richardson può aiutare a valutare l'indipendenza della griglia, ma richiede almeno tre diverse griglie e presuppone una progressione monotona delle variabili obiettivo.