744x
001886
29. Juli 2024

Modelle für transiente Turbulenz: URANS oder DDES?

In der Tragwerksplanung ist die Vorhersage der Auswirkungen turbulenter Windströmungen auf Bauwerke von entscheidender Bedeutung für die Sicherheit und Leistungsfähigkeit. Die Turbulenzmodellierung in der Numerischen Strömungsmechanik (Computational Fluid Dynamics - CFD) hilft, diese Interaktionen zu simulieren. Ingenieure müssen ein praktisches Turbulenzmodell auswählen, indem sie Effizienz, Genauigkeit und Anwendbarkeit abwägen. Gängige Modelle sind Reynolds-Averated Navier-Stokes (RANS), Unstetigkeits-Reynolds-Averated Navier-Stokes (URANS) und Load Detached Eddy Simulation (DDES). RANS ist robust und kostengünstig für stationäre Strömungen, URANS erfasst zeitabhängige Phänomene für mäßige Instabilitäten und DDES, ein Hybrid aus RANS und Large Eddy Simulation (LES), löst komplexe turbulente Strukturen auf. Das Verständnis der Stärken und Grenzen jedes Modells' hilft Ingenieuren, den besten Ansatz für ihre Anwendungen zu wählen.

Die Turbulenzmodellierung spielt in der Numerischen Strömungsmechanik (Computational Fluid Dynamics - CFD) eine entscheidende Rolle, da sie darauf abzielen, das Verhalten turbulenter Strömungen vorherzusagen. Diese Modelle sind entscheidend für die Erstellung effizienter und sicherer Ingenieuranwendungen wie der Analyse und Bemessung von Wind-Tragwerk-Interaktionen. Es gibt mehrere Ansätze zur Modellierung von Turbulenzen, wobei drei weit verbreitete Modelle Reynolds-Averated Navier-Stokes (RANS), Unstationäres Reynolds-Averated Navier-Stokes (URANS) und Verzögerungskombination (DDES) sind. Jedes dieser Modelle hat unterschiedliche Eigenschaften und spezifische Anwendungen.

RWIND verwendet die URANS- und DDES-Turbulenzmodelle als anwendbare instationäre Turbulenzmodelle in der Tragwerksplanung. Diese Modelle werden aufgrund ihrer Fähigkeit ausgewählt, rechnerische Effizienz und Genauigkeit in Einklang zu bringen, was sie für eine Vielzahl von Anwendungen im konstruktiven Ingenieurbau eignet. URANS bietet einen moderaten Rechenaufwand und erfasst gleichzeitig großmaßstäbliche transiente Phänomene, während DDES die Stärken von RANS und Large Eddy Simulation (LES) kombiniert, um eine detaillierte Auflösung komplexer turbulenter Strukturen zu erhalten. Durch die Integration dieser Modelle kann RWIND das Verhalten von Wind-Struktur-Interaktionen simulieren und so sowohl die Effizienz als auch die Genauigkeit der Analysen gewährleisten.

URANS (Instationäres Reynolds-Gemitteltes Navier-Stokes)

URANS baut auf der RANS-Methode auf, indem zeitabhängige Änderungen im Strömungsfeld berücksichtigt werden, sodass auch instationäre Effekte der Windlast erfasst werden können. Dadurch ist URANS in der Lage, transiente Strömungseigenschaften und oszillierende Verhaltensweisen wie wirbelerregte Schwingungen von Gebäudeecken größer zu modellieren. Obwohl URANS gegenüber RANS Verbesserungen bei der Erfassung von Unstetigkeiten bietet, werden immer noch Wirbel-Viskositäts-Modelle verwendet, die feinere turbulente Strukturen möglicherweise nicht ausreichend auflösen.

DDES (Delayed Detached Eddy Simulation)

DDES ist ein hybrides Verfahren, das RANS- und Large Eddy Simulation (LES)-Techniken integriert. In Bereichen mit einer angehängten Grenzschicht funktioniert DDES wie ein RANS-Modell, wodurch die Recheneffizienz gewährleistet wird. In Bereichen, in denen sich die Strömung ablöst und größere turbulente Strukturen vorherrschen, wechselt DDES zur genaueren Auflösung in einen LES-Modus. Dieser Ansatz eignet sich besonders bei komplexen Strömungen mit Ablösungen, Wiederanlagerungen und Nachlaufbereichen, wie z. B. um Gebäudekanten und -ecken. DDES bietet ein gutes Verhältnis zwischen Rechenaufwand und Genauigkeit und eignet sich daher zur Simulation von Strömungen mit hohen Reynoldszahlen und erheblichen instationären und getrennten Bereichen.

Vor- und Nachteile von URANS und DDES

Vorteile von URANS

  • Zeitabhängige Möglichkeiten: Mit URANS können instationäre Phänomene und vorübergehende Strömungsmerkmale wie wirbelerregte Schwingungen erfasst werden, was mit RANS nicht möglich ist.
  • Moderater Rechenaufwand: Obwohl URANS rechenintensiver als RANS ist, ist es im Vergleich zu komplexeren Modellen wie LES oder DDES immer noch relativ effizient.
  • Praktisch für das Ingenieurwesen: URANS eignet sich für viele praktische Systeme, bei denen die Erfassung großmaßstäblicher instationärer Verhaltensweisen wichtig ist.

Nachteile von URANS

  • Begrenzte Genauigkeit bei komplexen Strömungen: URANS kann feinere turbulente Strukturen aufgrund der Abhängigkeit von Wirbel-Viskositäts-Modellen nicht genau vorhersagen.
  • Noch zeitlich gemittelt: Wenn auch weniger streng als RANS, mittelt URANS dennoch den Fluss über die Zeit, wodurch einige wichtige transiente Details geglättet werden können.
  • Weniger effektiv bei stark getrennten Strömungen: URANS könnte mit Strömungen zu tun haben, die eine erhebliche Trennung und Wiederanlagerung aufweisen, da es in diesen Szenarien nicht so verfeinert ist wie LES oder Hybridmethoden.

DDES-Vorteile

  • Hybrider Ansatz: DDES vereint die Stärken von RANS und LES und ermöglicht so die effiziente Simulation von sowohl angesetzten Grenzschichten als auch abgelösten turbulenten Bereichen.
  • Genauigkeit bei komplexen Strömungen: DDES kann große turbulente Strukturen und komplexe Strömungsverhalten wie Ablösung, Wiederanlagerung und Nachlauf genauer auflösen und liefert so bessere Vorhersagen für Strömungen mit hohen Reynoldszahlen.
  • Recheneffizienz: Durch den Wechsel zwischen RANS- und LES-Modus hält DDES das Gleichgewicht zwischen Rechenaufwand und Simulationsgenauigkeit, wodurch es effizienter ist als die vollständige LES.

Nachteile von DDES

  • Höherer Rechenaufwand als URANS: DDES ist aufgrund der Notwendigkeit von LES-Berechnungen in bestimmten Strömungsbereichen rechenintensiver als URANS.
  • Komplexe Implementierung: Die hybride Natur von DDES erfordert eine sorgfältige Implementierung und Skalierung, um reibungslose Modellübergänge zwischen RANS- und LES-Regionen zu gewährleisten.
  • Berücksichtigung der Rasterauflösung: Die Leistungsfähigkeit von DDES hängt stark von der Qualität und Auflösung des Rechenrasters ab, insbesondere in Regionen, in denen das Modell von RANS zu LES wechselt.

Fazit

Zusammenfassung DDES bietet durch die Kombination von RANS- und LES-Methode eine genauere Abbildung solcher Strömungen, ist jedoch mit höherem Rechenaufwand und Komplexität verbunden.


Autor

Herr Kazemian ist verantwortlich für die Produktentwicklung und das Marketing für die Dlubal-Software, insbesondere für das Programm RWIND 2.



;