该模型展示了直至2014年施瓦本格明德州园艺展的创新建筑外墙结构。包括用于金、银和设计活动的展示区。该设计由获奖的isin建筑事务所负责。结构计算由Klöckner GmbH工程事务所使用 RSTAB 和 RFEM 完成,并由亚琛I.F.I. GmbH 提供风洞报告补充。3D 模型 (© Klöckner GmbH) 深入展示了复杂的外墙概念。
全部
本页有0条用户评论。
5 星 | ||
4 星 | ||
3 星 | ||
2 星 | ||
1 星 |
施瓦本格明德门面结构
无法下载
客户项目/只视图
节点数目: | 111 |
线的数目 | 75 |
杆件数目: | 23 |
面的数目: | 23 |
荷载工况数目 | 3 |
荷载组合数目 | 4 |
结果组合数目 | 2 |
总重量 | 0,019 t |
翘曲区域尺寸 | 1.560 x 0.412 x 1.510 m |
软件版本 | 5.02.00 |

Hin und wieder stellt sich die Frage zur Ermittlung des richtigen Lastangriffspunktes der positiven Querlasten in RF-/STAHL EC3 und RF-/STAHL AISC.

Bei offenen Querschnitten erfolgt der Abtrag von Torsionsbelastung vor allem über sekundäre Torsion, da die St. Venantsche Torsionssteifigkeit gegenüber der Wölbsteifigkeit gering ist. Besonders für den Biegedrillknicknachweis sind daher Wölbversteifungen im Querschnitt interessant, da diese die Verdrehung erheblich reduzieren können. Hierfür bieten sich beispielsweise Stirnplatten oder eingeschweißte Steifen und Profile an.

受弯梁的支座条件对其抵抗弯扭屈曲承载力至关重要。 例如将单跨梁在跨中按侧向固定,则可以避免受压翼缘的挠度,并强制使用双波振型。 通过该附加措施显着提高了临界弯扭屈曲弯矩。 在附加模块的杆件中,可以通过输入窗口“中间支座”为杆件设置不同的侧向支座。

Anhand eines Verifikationsbeispiels soll die Bemessung eines torsionsbeanspruchten Trägers nach AISC Design Guide 9 gezeigt werden. Die Bemessung erfolgt mit dem Zusatzmodul RF-STAHL AISC und der Modulerweiterung RF-STAHL Wölbkrafttorsion mit sieben Freiheitsgraden.

通过集成的模块扩展 RF-/STEEL Warping Torsion 可以在 RF-/STEEL AISC 中按照钢结构设计指导 9 (Design Guide 9) 进行设计。
按照翘曲扭转理论,通过 7 个自由度进行计算,实现了考虑扭转在内的实际稳定性设计。

在 RF-/STEEL AISC 中计算弯扭屈曲临界弯矩,通过特征值求解,它能够确定精确的临界荷载。
特征值求解通过振型图的显示窗口补充,这可以确保检查边界条件。

在 STEEL AISC 中可以在任何位置考虑侧向中间支撑。 例如,仅稳定上翼缘。
此外,还可以分配用户定义的侧向支撑,例如:在截面的任意位置上单个转动弹簧和平移弹簧。
在钢结构节点模块中,我在拉力验算中得到的预应力螺栓的利用率很高。这么高的利用率是从哪里来的,我该如何评估螺栓承载的余量?
将连接视为全刚性如何导致不经济的设计?
在全局计算中考虑剪切场和扭转支撑是否可行?
为您推荐产品