问题始终不停地出现,如何在RF-/STEEL EC3和RF-/STEEL AISC中确定正的横向荷载的正确荷载施加点。
知识库000880 | 荷载类型正点横向荷载
链接

如果在窗口 1.6 的“钢筋”中选择了“设计现有的钢筋”选项,那么 RFEM 的 RF-CONCRETE Members 或者 RSTAB 的 CONCRETE Members 会自动为用户提供钢筋建议。

对于钢筋混凝土结构,其结构性能受二阶分析影响显着,欧洲规范2根据二阶分析(5.8.6)提供了基于非线性确定内力的一般方法,基于名义曲率(5.8.8)的近似方法。
这篇文章的目的是根据欧洲规范 2 中的一根钢筋混凝土细长柱进行设计。
这篇文章的目的是根据欧洲规范 2 中的一根钢筋混凝土细长柱进行设计。

该技术文章采用钢筋混凝土梁的直接变形分析,考虑了徐变和收缩的长期影响。 为了按照欧洲规范 2 直接计算,这里以简支梁为例(EN 1992-1-1, 7.4.3)。 文章着重讨论了混凝土结构的受拉刚化现象,开裂状态下的分布系数(损伤参数)的收缩特性和徐变特性。
.png?mw=512&hash=4a84cbc5b1eacf1afb4217e8e43c5cb50ed8d827)
概述了抗震分析的基本方法,介绍了它们的原理和应用,以及在哪些情况下使用它们的效率更高
- 从 RFEM 导入截面、材料和荷载
- 输入直线或者抛物线形的预应力钢筋,定义任意的预应力钢筋
- 自动计算预应力和等效钢筋
- 输出 RFEM 等效荷载
- 考虑由摩擦、锚固滑移、钢筋松弛、混凝土弹性变形等因素引起的短期预应力损失
- 输出锚固前后预应力钢筋的应变
- 计算预应力钢筋最小应力和最大应力
- 输出计算截面的内力
- RF-TENDON Design 在后台选择计算
- 显示预应力钢筋布置图形的三维渲染视图
- 打印输出计算结果或者导出 RTF 格式文件
- 灵活设置图形显示参数和单位(公制的或者英制的、十进制等)

“材料非线性”模块包括了混凝土结构构件的 | “各向异性损伤”材料模型。 使用该材料模型,可以考虑杆件、面和实体的混凝土损伤。
对于应力-应变图,您可以有三种方式来定义,它们分别是通过表格定义,使用参数生成,以及使用规范中的预定义参数。 此外,还可以考虑拉伸刚化效应。
对于钢筋,可以选择两种非线性材料模型, | 它们是“各向同性 | 塑性(杆件)”和 | “各向同性 | 非线性弹性(杆件)”。
此外,还可以通过最近发布的“静力分析 | 徐变与收缩(线性)”分析类型 | 来考虑徐变和收缩效应。 徐变通过增加混凝土的变形(通过一个因子 1+phi 拉伸应力-应变曲线)来考虑,而收缩则通过在分析前就给混凝土施加一个初始的变形(预应变)来考虑。 如果需要进行更精确的分析,您可以使用“时变分析(TDA)”的模块。
为您推荐产品