全部
本页有0条用户评论。
5 星 | ||
4 星 | ||
3 星 | ||
2 星 | ||
1 星 |
框架节点的有限元模型
节点数目: | 108 |
线的数目 | 167 |
杆件数目: | 5 |
面的数目: | 65 |
实体数目 | 0 |
荷载工况数目 | 1 |
荷载组合数目 | 0 |
结果组合数目 | 0 |
总重量 | 3,014 t |
翘曲区域尺寸 | 5.730 x 4.582 x 0.304 m |
您可以下载该结构分析模型来进行专业练习,或者用于您的工程项目。 但是我们不保证模型的准确性或完整性,也不承担任何责任。
类似模型

Für detailliertere Untersuchungen von Scher-Lochleibungs-Verbindungen beziehungsweise deren unmittelbarer Umgebung spielt die Vorgabe der nichtlinearen Kontaktproblematik eine wichtige Rolle. In diesem Beitrag wird mithilfe eines Volumenmodells nach vergleichbaren und vereinfachten Flächenmodellen gesucht.

本文探讨了在建模和设计中考虑节点与结构相互作用的重要性以及如何在 RFEM 6 中进行考虑。

概述了抗震分析的基本方法,介绍了它们的原理和应用,以及在哪些情况下使用它们的效率更高

面之间的焊缝应力可以使用 RFEM 6 中的应力-应变分析模块进行计算。 此外,可以输入根据相关规范确定的应力极限值,以确定焊缝的应力比。 本文将通过两个来自 AISC 第 1 卷的示例,按照规范 [1] 对角焊缝设计进行说明: 设计举例 [2].

- 计算主应力和基本应力、膜应力和剪应力
- 几乎对任意形状的结构构件进行应力验算
- 计算等效应力按照不同的假设:
- 形状改变比能假设 (von Mises)
- 剪应力假设 (Tresca)
- 正应力假设 (Rankine)
- 主应变假设 (Bach)
- 选择优化面的厚度并且导入到 RFEM
- 正常使用极限状态验算,例如验算面位移
- 在表格和图形中分别显示输出各个应力组成部分和应力利用率
- 可以在表格中使用面、线和节点的过滤选项
- 横向剪应力按照 Mindlin、Kirchhoff 或自定义
- 需要进行设计的面列表

在钢结构节点设计的承载能力极限状态中,您可以更改焊缝的极限塑性应变。

用户可以使用“底板”组件设计以及锚固锚固后的锚固节点。 在这种情况下,板件、焊缝、锚固以及钢筋和混凝土之间的相互作用都会被计算在内。
在钢结构节点模块中,我在拉力验算中得到的预应力螺栓的利用率很高。这么高的利用率是从哪里来的,我该如何评估螺栓承载的余量?
将连接视为全刚性如何导致不经济的设计?
在全局计算中考虑剪切场和扭转支撑是否可行?
我计算了一个底部固定的柱子,顶部在 X 方向被刚接,Y 方向可以屈曲。我使用节点支座设置了屈曲长度。在设计中,两个方向的屈曲长度 L_(cr,z) = L_(cr,y) = 2.41 m。请问我哪里出错了?
为您推荐产品