402x
009019
2020-12-07

VE0019 | Flessione plastica - Carico del momento

Descrizione

Uno sbalzo è completamente fissato all'estremità sinistra e caricato da un momento flettente secondo il seguente schizzo. The problem is described by the following set of parameters. Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection uz,max.

Material Elastic-Plastic Modulo E E 210000.000 MPa
deformazione trasversale ν 0.000 -
Modulo di taglio G 105000.000 MPa
Plastic Strength fy 240.000 MPa
Geometry Cantilever Durata L 2.000 m
Larghezza w 0.005 m
spessore t 0.005 m
Load Momento flettente M 6.000 Nm

Soluzione analitica

The cantilever is loaded by the bending moment M. The quantities of this load are discussed at first. The moment Me when the first yield occurs and the ultimate moment Mp when the structure becomes plastic hinge are calculated as follows:

The bending moment M causes the elastic-plastic state. The cross-section in the elastic-plastic state is divided into the elastic core and the plastic surface, which is described by the parameter zp according to the following diagram.

The elastic-plastic moment Mep in the cross-section has to equal to the bending moment M. The curvature κ results from this equality.

The total deflection of the structure uz,max is calculated using the Mohr's integral.

RFEM Settings

  • Modeled in RFEM 5.16 and RRFEM 6.01
  • The element size is lFE= 0.020 m
  • Geometrically linear analysis is considered
  • The number of increments is 5
  • Shear stiffness of the members is neglected

Risultati

Material Model Soluzione analitica RFEM 5 RFEM 6
uz,max [m] uz,max [m] Ratio [-] uz,max [m] Ratio [-]
Plastica ortotropa 2D 1.180 1.190 1.008 1.190 1.008
Isotropic Plastic 2D/3D, Plate 1.173 0.994 1.173 0.994
Plastico isotropo 1D 1.180 1.000 1.180 1.000
Isotropic Nonlinear Elastic 2D/3D, Plate, Mises 1.190 1.008 1.190 1.008
Isotropic Nonlinear Elastic 2D/3D, Plate, Tresca 1.190 1.008 1.190 1.008
Plastico isotropo 1D 1.180 1.000 1.180 1.000

Bibliografia
  1. Lublino, J. (1990). Teoria della plasticità. New York: Macmillan.


;