402x
009019
2020-12-07

VE0019 | Flexão plástica – Carga de momento

Descrição

Uma viga em consola está completamente fixada na extremidade esquerda e carregada por um momento fletor de acordo com o esboço seguinte. O problema é descrito pelo seguinte conjunto de parâmetros. Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection uz,max.

Material Elastic-Plastic Módulo E E 210000.000 MPa
Deformação transversal ν 0.000 -
módulo de corte G 105000.000 MPa
Plastic Strength fy 240.000 MPa
Geometry Cantilever perímetro L 2.000 m
Largura w 0.005 m
Espessura t 0.005 m
Load Momento fletor M 6.000 Nm

Analytical Solution

The cantilever is loaded by the bending moment M. The quantities of this load are discussed at first. The moment Me when the first yield occurs and the ultimate moment Mp when the structure becomes plastic hinge are calculated as follows:

The bending moment M causes the elastic-plastic state. The cross-section in the elastic-plastic state is divided into the elastic core and the plastic surface, which is described by the parameter zp according to the following diagram.

The elastic-plastic moment Mep in the cross-section has to equal to the bending moment M. The curvature κ results from this equality.

The total deflection of the structure uz,max is calculated using the Mohr's integral.

RFEM Settings

  • Modeled in RFEM 5.16 and RRFEM 6.01
  • The element size is lFE= 0.020 m
  • Geometrically linear analysis is considered
  • The number of increments is 5
  • Shear stiffness of the members is neglected

Resultados

Material Model Analytical Solution RFEM 5 RFEM 6
uz,max [m] uz,max [m] Ratio [-] uz,max [m] Ratio [-]
Ortotrópico plástico 2D 1.180 1.190 1.008 1.190 1.008
Isotropic Plastic 2D/3D, Plate 1.173 0.994 1.173 0.994
Isotrópico plástico 1D 1.180 1.000 1.180 1.000
Isotropic Nonlinear Elastic 2D/3D, Plate, Mises 1.190 1.008 1.190 1.008
Isotropic Nonlinear Elastic 2D/3D, Plate, Tresca 1.190 1.008 1.190 1.008
Isotrópico plástico 1D 1.180 1.000 1.180 1.000

Referências
  1. Lubliner, J. (1990). Teoria da plasticidade. Nova Iorque: MacMillan.


;