402x
009019
2020-12-07

VE0019 | Flexión plástica – Momento cargado

Descripción del trabajo

Un voladizo está completamente fijado en el extremo izquierdo y cargado por un momento flector según el siguiente croquis. The problem is described by the following set of parameters. Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection uz,max.

Material Elastic-Plastic Módulo de elasticidad E 210000.000 MPa
coeficiente de Poisson ν 0.000 -
Módulo de cortante G 105000.000 MPa
Plastic Strength fy 240.000 MPa
Geometry Cantilever perímetro L 2.000 m
Ancho w 0.005 m
Espesor t 0.005 m
Load Momento flector M 6.000 Nm

Solución analítica

The cantilever is loaded by the bending moment M. The quantities of this load are discussed at first. The moment Me when the first yield occurs and the ultimate moment Mp when the structure becomes plastic hinge are calculated as follows:

The bending moment M causes the elastic-plastic state. The cross-section in the elastic-plastic state is divided into the elastic core and the plastic surface, which is described by the parameter zp according to the following diagram.

The elastic-plastic moment Mep in the cross-section has to equal to the bending moment M. The curvature κ results from this equality.

The total deflection of the structure uz,max is calculated using the Mohr's integral.

RFEM Settings

  • Modeled in RFEM 5.16 and RRFEM 6.01
  • The element size is lFE= 0.020 m
  • Geometrically linear analysis is considered
  • The number of increments is 5
  • Shear stiffness of the members is neglected

Resultados

Material Model Solución analítica RFEM 5 RFEM 6
uz,max [m] uz,max [m] Ratio [-] uz,max [m] Ratio [-]
Ortótropo plástico 2D 1.180 1.190 1.008 1.190 1.008
Isotropic Plastic 2D/3D, Plate 1.173 0.994 1.173 0.994
Isótropo plástico 1D 1.180 1.000 1.180 1.000
Isotropic Nonlinear Elastic 2D/3D, Plate, Mises 1.190 1.008 1.190 1.008
Isotropic Nonlinear Elastic 2D/3D, Plate, Tresca 1.190 1.008 1.190 1.008
Isótropo plástico 1D 1.180 1.000 1.180 1.000

Referencias
  1. Lubliner, J. (1990). Teoría de la plasticidad. Nueva York: Macmillan.


;