402x
009019
7.12.2020

VE0019 | Plastický ohyb - momentové zatížení

Popis

Konzola je plně fixována na levém konci a zatížena ohybovým momentem podle následujícího náčrtu. The problem is described by the following set of parameters. Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection uz,max.

Materiál Elastic-Plastic Modul pružnosti E 210000.000 MPa
Poissonův součinitel ν 0.000 -
Smykový modul G 105000.000 MPa
Plastic Strength fy 240.000 MPa
Geometrie Cantilever obvod L 2.000 m
Šířka w 0.005 m
Tloušťka t 0.005 m
Load Ohybový moment M 6.000 Nm

Analytické řešení

The cantilever is loaded by the bending moment M. The quantities of this load are discussed at first. The moment Me when the first yield occurs and the ultimate moment Mp when the structure becomes plastic hinge are calculated as follows:

The bending moment M causes the elastic-plastic state. The cross-section in the elastic-plastic state is divided into the elastic core and the plastic surface, which is described by the parameter zp according to the following diagram.

The elastic-plastic moment Mep in the cross-section has to equal to the bending moment M. The curvature κ results from this equality.

The total deflection of the structure uz,max is calculated using the Mohr's integral.

Nastavení programu RFEM

  • Modeled in RFEM 5.16 and RRFEM 6.01
  • The element size is lFE= 0.020 m
  • Geometrically linear analysis is considered
  • The number of increments is 5
  • Shear stiffness of the members is neglected

Výsledky

Material Model Analytické řešení RFEM 5 RFEM 6
uz,max [m] uz,max [m] Ratio [-] uz,max [m] Ratio [-]
Ortotropní plastický 2D 1.180 1.190 1.008 1.190 1.008
Isotropic Plastic 2D/3D, Plate 1.173 0.994 1.173 0.994
Izotropní plastický 1D 1.180 1.000 1.180 1.000
Isotropic Nonlinear Elastic 2D/3D, Plate, Mises 1.190 1.008 1.190 1.008
Isotropic Nonlinear Elastic 2D/3D, Plate, Tresca 1.190 1.008 1.190 1.008
Izotropní plastický 1D 1.180 1.000 1.180 1.000

Reference
  1. Lubliner, J. (1990). Teorie plasticity. New York: Macmillan.


;