欧洲规范 EN 1991-1-4 对此规定了一种计算概念,以及空气动力学值和折减系数。 Diese Angaben ergeben final eine resultierende Windkraft auf das Bauteil. Eine Winddruckverteilung um das Bauteil wird hier nicht angegeben. Die Windkraft basiert demnach auf folgendem Zusammenhang:
cscd |
是由两部分组成的结构系数,考虑到峰值风压不是同时出现在整个表面上 (cs ),以及由风湍流引起的类似共振的结构振动 (cd ), |
cf |
是建筑物或建筑物对象截面的力系数, |
qp(ze) |
是参照高度z处的峰值风速压力 |
Aref |
Bezugsfläche für einen Baukörper oder Baukörperabschnitt |
Nimmt man das betrachtete Bauteil als starren unnachgiebigen Körper unter einer konstanten Windströmung an, so vereinfacht sich die Ermittlung der Windkraft auf folgende Gesetzmäßigkeit:
Für ein nicht-schlankes Bauteil mit einem quadratisch abgerundeten Querschnitt ermittelt sich nach [1] der Kraftbeiwert cf über folgenden Zusammenhang:
Herkömmliche Ermittlung der Windbelastung
Exemplarisch ergibt sich nach [1] für diese Bauteileigenschaften
ein Kraftbeiwert cf = 0,97.
Diese Größe basiert auf dem Grundkraftbeiwert cf,0 = 2,15 abhängig von dem Seitenlängenverhältnis d/b = 280 mm/280 mm = 1,
dem Abminderungsfaktor Ψr = 0,75 abhängig vom Radius-Seitenlängenverhältnis r/b = 28 mm/280mm = 0,1
und zuletzt dem Abminderungsfaktor Ψλ = 0,6 abhängig von der Schlankheit λ = 1 mit Annahme einer voll geschlossen Bauteiloberfläche φ = 1.
Der auf die Bezugsfläche Aref = 280 mm ⋅ 280 mm = 0,0784 m² aufgebrachte Geschwindigkeitsdruck q = 563 N/m² ergibt über den Zusammenhang:
Somit wirkt final eine Windkraft Fw = 0,97 ⋅ 563 N/m² ⋅ 0,0784 m² = 43 N auf das Bauteil in Windrichtung.
Numerische Ermittlung der Windbelastung
Ist neben dieser Windkraft Fw auch die Winddruckverteilung über das Bauteil nötig, kann zum Beispiel über eine CFD-Analyse eine entsprechende Druckverteilung auf dem Bauteil errechnet werden. Hier stellt man gedanklich das Bauteil in einen numerischen Windkanal und ermittelt abhängig von der resultierenden Druck- und Geschwindigkeitsverteilung um das Bauteil die Druckverteilung auf dem Bauteil.
Das Programm RWIND Simulation erlaubt solch eine numerische Simulation von Windströmungen um Gebäude oder sonstige Objekte auf Basis eines 3D-Finite-Volumen-Netzes. Dieses Netz wird von der Anwendung automatisch mit zum Modell hin angepassten zueinander korrelierenden Elementgrößen erzeugt. Je näher die Finite-Volumen-Elemente an der Modelloberfläche liegen, desto feiner wird das Netz generiert. Das Programm verwendet für diesen Prozess den OpenFOAM-Netzgenerator (SnappyHexMesh). Für die Berechnung der Windströmung und des Winddrucks auf der Modelloberfläche wird der stationäre SimpleFOAM-Löser für inkompressible turbulente Strömungen verwendet.
Für das gegebene Beispiel ergibt eine RWIND-Simulation-Berechnung eine ähnliche Windkraft Fw = 41 N. Neben dieser Resultierenden gibt das Programm auch die Druck- und Windgeschwindigkeitsverteilung um das Bauteil sowie die Druckverteilung auf dem Bauteil mit aus.