We will perform some stability analyses for flexural buckling and lateral-torsional buckling for a column with double-bending, considering the interaction conditions.
Design values of static loads |
The design is performed for all x-locations (see Chapter 4.5) of the equivalent member. The governing location is x = 2.00 m. RFEM or RSTAB determines the following internal forces:
N | My | Mz | Vy | Vz |
---|---|---|---|---|
-300.00 kN |
10.00 kNm |
7.50 kNm |
3.75 kN |
0.00 kN |
Property | Symbol | Value | Unit |
---|---|---|---|
Cross-sectional area |
A |
54.30 |
cm² |
Moment of inertia |
Iy |
2490.00 |
cm4 |
Moment of inertia |
Iz |
889.00 |
cm4 |
Radius of gyration |
iy |
6.78 |
cm |
Radius of gyration |
iz |
4.05 |
cm |
Polar radius of gyration |
ip |
7.90 |
cm |
Polar radius of gyration |
ip,M |
41.90 |
cm |
Section weight |
G |
42.63 |
kg/m |
Torsional constant |
IT |
31.40 |
cm4 |
Warping constant |
Iω |
47940.00 |
cm6 |
Elastic section modulus |
Wy |
311.00 |
cm3 |
Elastic section modulus |
Wz |
111.00 |
cm3 |
Plastic section modulus |
Wpl,y |
354.00 |
cm3 |
Plastic section modulus |
Wpl,z |
169.96 |
cm3 |
Buckling curve |
BCy |
b |
|
Buckling curve |
BCz |
c |
|
→ Design for flexural buckling must be performed.
cross-sectional geometry: h/b = 1.00 ≤ 1.2; structural steel S 235; t ≤ 100 mm
Iz |
889.00 |
cm4 |
|
|
|
Effective member length |
Lcr,z |
4.000 |
m |
|
|
Elastic flexural buckling force |
Ncr,z |
1151.60 |
kN |
|
|
Slenderness |
λz |
1.053 |
|
> 0.2 |
6.3.1.2(4) |
Buckling curve |
BCz |
c |
|
|
Tab. 6.2 |
Imperfection factor |
αz |
0.490 |
|
|
Tab. 6.1 |
Auxiliary factor |
Φz |
1.263 |
|
|
6.3.1.2(1) |
Reduction factor |
χz |
0.510 |
|
|
Eq. (6.49) |
→ Design for flexural buckling must be performed.
cross-sectional geometry: h/b = 1.00 ≤ 1.2; structural steel S 235; t ≤ 100 mm
Second moment of area |
Iy |
2490.00 |
cm4 |
|
|
Effective member length |
Lcr,y |
4.000 |
m |
|
|
Elastic flexural buckling force |
Ncr,y |
3225.51 |
kN |
|
|
Cross-sectional area |
A |
54.30 |
cm2 |
|
|
Yield strength |
fy |
23.50 |
kN/cm2 |
|
3.2.1 |
Slenderness |
λy |
0.629 |
|
> 0.2 |
6.3.1.2(4) |
Buckling curve |
BCy |
b |
|
|
Tab. 6.2 |
Imperfection factor |
αy |
0.340 |
|
|
Tab. 6.1 |
Auxiliary factor |
Φy |
0.771 |
|
|
6.3.1.2(1) |
Reduction factor |
χy |
0.822 |
|
|
Eq. (6.49) |
In this example, the elastic critical moment for lateral-torsional buckling is determined according to the Austrian National Annex with assumption of hinged supports free to warp.
The load application point is assumed to be in the shear center (you can adjust the application point for transverse loads in the Details dialog box,
The program also shows Mcr,0 which is determined on the basis of a constant moment distribution.
For the results by x-location, the program also shows the Mcr,x values. Those are the elastic critical moments at the x-locations relative to the elastic critical moment at the location of the maximum moment. Using Mcr,x, the program then calculates the relative slenderness ƛLT.
Calculation according to [1] clause 6.3.2.2 for location with the maximum moment at x = 2.00 m:
HEB-160, cross-section class 1: Wy = Wpl,y = 354.00 cm3
Calculation according to [1] clause 6.3.2.3
HEB-160: h/b = 1.0 < 2.0 ⇒ buckling curve b according to [1] Table 6.5
- Auxiliary factor:
Limiting slenderness:
Parameter (minimum value):
Imperfection factor according to [1] Table 6.3:
According to [1] clause 6.3.2.3, the reduction factor may be modified as follows:
Correction factor kc according to [1] Table 6.6 for a parabolic moment diagram:
Determination according to [6] Annex B, Table B.2, for structural components susceptible to torsional deformations
The equivalent moment factor CmLT is obtained according to Table B.3 for ψ = 0 as:
Determination according to [1] Annex B, Table B.2, for structural components susceptible to torsional deformations
The equivalent moment factor CmLT is obtained according to Table B.3 for ψ = 0 as:
According to [1]
where
According to EN1993-1-1
Section depth |
h |
160.0 |
mm |
|
|
Section width |
b |
160.0 |
mm |
|
|
Criterion |
h/b |
1.00 |
|
≤ 2 |
Tab. 6.5 |
Buckling curve |
BCLT |
b |
|
|
Tab. 6.5 |
Imperfection factor |
αLT |
0.340 |
|
|
Tab. 6.3 |
Shear modulus |
G |
8100.00 |
kN/cm3 |
|
|
Length factor |
kz |
1.000 |
|
|
|
Length factor |
kw |
1.000 |
|
|
|
Length |
L |
4.000 |
m |
|
|
Warping constant |
Iw |
47940.00 |
cm6 |
|
|
Torsional constant |
It |
31.40 |
cm4 |
|
|
Elastic critical moment for LTB for determination of related slenderness |
Mcr,0 |
190.90 |
kNm |
|
|
Moment distribution |
Diagr My |
6) parabola |
|
|
|
Maximum sagging moment |
My,max |
10.00 |
kNm |
|
|
Boundary moment |
My,A |
0.00 |
kNm |
|
|
Moment ratio |
ψ |
0.000 |
|
|
|
Moment factor |
C1 |
1.130 |
|
|
[2] |
Ideal elastic critical moment |
Mcr |
215.71 |
kNm |
|
|
Elastic section modulus |
Wy |
354.00 |
cm3 |
|
|
Slenderness |
λLT |
0.621 |
|
|
6.3.2.2(1) |
Parameter |
λLT,0 |
0.400 |
|
|
6.3.2.3(1) |
Parameter |
β |
0.750 |
|
|
6.3.2.3(1) |
Auxiliary factor |
φLT |
0.682 |
|
|
6.3.2.3(1) |
Reduction factor |
χLT |
0.908 |
|
|
Eq. (6.57) |
Correction factor |
kc |
0.940 |
|
|
6.3.2.3(2) |
Modification factor |
f |
0.972 |
|
|
6.3.2.3(2) |
Reduction factor |
χLT,mod |
0.934 |
|
|
Eq. (6.58) |
Moment distribution |
Diagr My |
3) max in span |
|
|
Tab. B.3 |
Moment factor |
ψy |
1.000 |
|
|
Tab. B.3 |
Moment |
Mh,y |
0.00 |
kNm |
|
Tab. B.3 |
Moment |
Ms,y |
10.00 |
kNm |
|
Tab. B.3 |
Ratio Mh,y / Ms,y |
αh,y |
0.000 |
|
|
Tab. B.3 |
Load type |
Load z |
uniform load |
|
|
Tab. B.3 |
Moment factor |
Cmy |
0.950 |
|
|
Tab. B.3 |
Moment distribution |
Diagr Mz |
3) max in span |
|
|
Tab. B.3 |
Moment factor |
ψz |
1.000 |
|
|
Tab. B.3 |
Moment |
Mh,z |
0.00 |
kNm |
|
Tab. B.3 |
Moment |
Ms,z |
7.50 |
kNm |
|
Tab. B.3 |
Ratio Mh,z / Ms,z |
αh,z |
0.000 |
|
|
Tab. B.3 |
Load type |
Load y |
concentrated load |
|
|
Tab. B.3 |
Moment factor |
Cmz |
0.900 |
|
|
Tab. B.3 |
Moment distribution |
Diagr My,LT |
3) max in span |
|
|
Tab. B.3 |
Moment factor |
ψy,LT |
1.000 |
|
|
Tab. B.3 |
Moment |
Mh,y,LT |
0.00 |
kNm |
|
Tab. B.3 |
Moment |
Ms,y,LT |
10.00 |
kNm |
|
Tab. B.3 |
Ratio Mh,y,LT / Ms,y,LT |
αh,y,LT |
0.000 |
|
|
Tab. B.3 |
Load type |
Load z |
uniform load |
|
|
Tab. B.3 |
Moment factor |
CmLT |
0.950 |
|
|
Tab. B.3 |
Component type |
Com-ponent |
torsionally weak |
|
|
|
Interaction factor |
kyy |
1.067 |
|
|
Tab. B.2 |
Interaction factor |
kyz |
0.888 |
|
|
Tab. A.1 |
Interaction factor |
kzy |
0.934 |
|
|
Tab. A.1 |
Interaction factor |
kzz |
1.481 |
|
|
Tab. A.1 |
Axial force (compression) |
NEd |
300.00 |
kN |
|
|
Governing cross-sectional area |
Ai |
54.30 |
cm2 |
|
Tab. 6.7 |
Compression resistance |
NRk |
1276.05 |
kN |
|
Tab. 6.7 |
Partial safety factor |
γM1 |
1.000 |
|
|
6.1 |
Design component for N |
γNy |
0.29 |
|
≤ 1 |
Eq. (6.61) |
Design component for N |
hNz |
0.46 |
|
≤ 1 |
Eq. (6.62) |
Moment |
My,Ed |
10.00 |
kNm |
|
|
Moment resistance |
My,Rk |
83.19 |
kNm |
|
Tab. 6.7 |
Moment component |
ηMy |
0.13 |
|
|
Eq. (6.61) |
Moment |
Mz,Ed |
7.50 |
kNm |
|
|
Elastic section modulus |
WZ |
169.96 |
cm3 |
|
|
Moment resistance |
Mz,Rk |
39.94 |
kNm |
Tab. 6.7 |
|
Moment component |
ηMz |
0.19 |
|
|
Eq. (6.61) |
Design 1 |
η1 |
0.59 |
|
≤ 1 |
Eq. (6.61) |
Design 2 |
η2 |
0.86 |
|
≤ 1 |
Eq. (6.62) |