在 2024 年 9 月 5 日的网络课堂“ RFEM 6 中轻型体育馆屋顶的找形”中使用了该模型。
全部
本页有0条用户评论。
5 星 | ||
4 星 | ||
3 星 | ||
2 星 | ||
1 星 |
轻型膜结构屋盖结构
节点数目: | 82 |
线的数目 | 152 |
杆件数目: | 152 |
面的数目: | 24 |
实体数目 | 0 |
荷载工况数目 | 1 |
荷载组合数目 | 4 |
结果组合数目 | 0 |
总重量 | 2,860 t |
翘曲区域尺寸 | 24,000 x 6,000 x 24,000 m |
您可以下载该结构分析模型来进行专业练习,或者用于您的工程项目。 但是我们不保证模型的准确性或完整性,也不承担任何责任。

在 RFEM 6 中可以将所选对象(以及整个结构)保存为块,然后在其他模型中重复使用。 可以区分三种类型的块: 非参数化、参数化和动态块(通过 JavaScript)。 本文将重点介绍第一种块类型(非参数化)。

本文探讨了在建模和设计中考虑节点与结构相互作用的重要性以及如何在 RFEM 6 中进行考虑。

概述了抗震分析的基本方法,介绍了它们的原理和应用,以及在哪些情况下使用它们的效率更高

面之间的焊缝应力可以使用 RFEM 6 中的应力-应变分析模块进行计算。 此外,可以输入根据相关规范确定的应力极限值,以确定焊缝的应力比。 本文将通过两个来自 AISC 第 1 卷的示例,按照规范 [1] 对角焊缝设计进行说明: 设计举例 [2].

, | Fabric | 选择非线性弹性(面)',您可以使用具有代表性的实体单元模型 - RVE 来定义预应力膜结构。
通过微结构模型中膜的几何形状,可以对膜面中的所有力条件都考虑相应的横向应变效应。

在钢结构节点设计的承载能力极限状态中,您可以更改焊缝的极限塑性应变。

用户可以使用“底板”组件设计以及锚固锚固后的锚固节点。 在这种情况下,板件、焊缝、锚固以及钢筋和混凝土之间的相互作用都会被计算在内。
为您推荐产品