- 杆件和连续杆件的受拉、受压、受弯、受剪以及组合内力设计
- 弯扭屈曲和弯扭屈曲稳定性验算按照等效杆件方法或者二阶理论方法进行
- 通过挠度限值计算正常使用极限状态
- 可自由配置炭化时间和炭化速率,以及在进行抗火设计时自由选择炭化面
- 层板胶合木变截面梁和弯曲梁设计
- 按照加拿大规范的材料和截面库
- 用户自定义输入矩形截面和圆形截面
- 自动优化截面
- 可以选择从模块 RF-STABILITY/RSBUCK 导入屈曲长度
- 完整全面的计算结果输出文件包括所选规范的公式说明
- 对结果有多种筛选和排序选项
- 考虑潮湿使用条件
- 在 RFEM/RSTAB 模型中显示验算准则可视化彩图
- 导出 MS Excel 格式文件
- 公制和英制单位
RF-/TIMBER CSA | 产品特性

在 RFEM 的材料库中,您可以找到符合美国和加拿大规范 ANSI/APA PRG 510 Plywood (USA/Canada) 的胶合板材料。

RFEM 中美国和加拿大用户可以选择定向刨花板 (OSB) 。 材料参数选自《规范设计手册》。

“木结构设计”模块可以按照不同规范对木杆件进行承载能力极限状态、正常使用极限状态设计和极限状态防火设计。

现代化的三维结构分析和设计软件适用于梁结构的静力和动力分析,以及混凝土、钢、木结构和其他材料的设计。

“木结构设计”模块可以按照不同规范对木杆件进行承载能力极限状态、正常使用极限状态设计和极限状态防火设计。

根据欧洲规范 5 或 DIN 1052 对简单、连续和带或不带悬臂的 Gerber 梁进行木结构设计

使用“材料非线性”模块,可以在 RFEM 中考虑材料的非线性,例如塑性各向同性、塑性正交各向异性、各向同性损伤。

用户可以通过多层结构模块对多层结构进行定义。 计算时可以考虑或不考虑剪切耦合。

优化和成本/CO2 排放估算模块通过粒子群优化算法 (PSO) 的人工智能 (AI) 技术为参数化模型和块寻找合适的参数,使其符合通用的优化准则。 此外,该模块还通过为结构模型的每种材料指定单位成本和排放量来估算模型的成本或二氧化碳的排放量。

“应力-应变分析”模块用于执行一般应力分析,通过计算现有的实际应力,然后与构件的极限应力进行比较。

“混凝土设计”模块可以按照国际规范进行各种设计验算。 可以设计杆件、面和柱,以及进行冲切设计和变形分析。

使用 RFEM 的砌体设计模块,您可以通过有限元法对砌体结构进行设计。 该模块是作为研究项目 DDMaS – 砌体结构设计数字化的一部分而开发的。 该材料模型以宏观建模的形式来表现砌块和砂浆材料组合的非线性行为。

使用 Aluminium Design 模块可以按照不同的规范对铝合金杆件进行承载能力极限状态和正常使用极限状态设计。
.png?mw=600&hash=49b6a289915d28aa461360f7308b092631b1446e)
使用 RFEM 的钢结构节点模块,您可以使用有限元模型对钢结构节点进行分析。 有限元模型在后台自动生成,可以通过简单地输入组件来控制。

“翘曲扭转 (7自由度)”模块允许在计算杆件时将截面翘曲作为额外的一个自由度进行考虑。

此外,该模块还通过为结构模型的每种材料指定单位成本和排放量来估算模型的成本或二氧化碳的排放量。

使用 Aluminium Design 模块可以按照不同的规范对铝合金杆件进行承载能力极限状态和正常使用极限状态设计。

使用“施工阶段分析 (CSA)”模块可以在 RFEM 中考虑施工过程对结构(杆件、面和实体结构)的影响。