因此按照 DIN EN 1992-1-1, 9.4.1 (3) 的倒塌配筋在 RF-PUNCH Pro 中不会单独显示,必须由设计师额外考虑。




这篇文章的目的是根据欧洲规范 2 中的一根钢筋混凝土细长柱进行设计。

与附加模块 RF-FORM-FINDING (RFEM 5) 相比,在 RFEM 6 的结构找形模块中增加了以下新功能:
- 在一个荷载工况中指定所有找形荷载边界条件
- 将找形结果存储为初始状态,用于进一步的模型分析
- 通过组合向导将找形分析得出的初始状态自动分配给一个设计状况的所有荷载情况
- 杆件的额外找形几何边界条件(无应力长度、最大竖向垂度、低点竖向垂度)
- 杆件的附加找形荷载边界条件(杆件中的最大力、杆件中的最小力、拉力水平分量、i 端拉力、j 端拉力、i 端最小拉力、j 端最小拉力)
- 材料库中包括材料类型“织物”和“薄膜”
- 在一个模型中平行进行结构找形分析
- 与施工阶段分析 (CSA) 模块结合连续建立找形状态的模拟

在正常使用极限状态配置中可以调整截面的各种设计参数。 在那里可以控制变形和裂缝宽度分析中应用的截面条件。
可以激活以下设置:
- 由相关荷载计算的裂缝状态
- 由所有正常使用极限状态设计状况确定的包络裂缝状态
- 截面开裂状态 - 与荷载无关

在'编辑杆件'下的'设计支座和挠度'选项卡中,可以使用优化的输入窗口对杆件进行明确分段。 程序会自动使用悬臂梁或单跨支座梁的变形极限。
通过在杆件始端、末端和中间节点上定义相应方向的设计支座,程序会自动识别允许变形所涉及的构件和构件长度。 根据计算支座,它会自动识别是梁还是悬臂梁。 不再需要像以前的版本 (RFEM 5) 中那样手动分配。
使用'用户自定义长度'选项,可以在表格中修改参考长度。 始终默认使用相应的构件长度。 如果参照长度与杆件长度有偏差(例如弯曲杆件),则可以进行调整。

此外,该功能还有助于清晰地显示结果。 用户可以使用【裁剪平面】来剖切模型,为模型创建剖视图。 用户可以通过勾选“修改”后的平面内容, 这样,您可以清楚简单地显示例如相贯或实体的结果。

现代化的三维结构分析和设计软件适用于梁结构的静力和动力分析,以及混凝土、钢、木结构和其他材料的设计。

“结构找形分析”模块可以找到受轴力作用的杆件和张力作用的面模型的最优形状。

用于对包含板、墙、壳、杆件(梁)、实体和接触单元的平面和空间结构体系进行有限元分析的结构工程分析软件

根据英国规范 BS 5950-1:2000 或英国附录 BS EN 1993-1-1 设计钢杆件

按照英国规范 BS 5950-1:2000 或英国附录 BS EN 1993-1-1 进行钢杆件设计

使用“材料非线性”模块,可以在 RFEM 中考虑材料的非线性,例如塑性各向同性、塑性正交各向异性、各向同性损伤。

用户可以通过多层结构模块对多层结构进行定义。 计算时可以考虑或不考虑剪切耦合。

优化和成本/CO2 排放估算模块通过粒子群优化算法 (PSO) 的人工智能 (AI) 技术为参数化模型和块寻找合适的参数,使其符合通用的优化准则。 此外,该模块还通过为结构模型的每种材料指定单位成本和排放量来估算模型的成本或二氧化碳的排放量。

“应力-应变分析”模块用于执行一般应力分析,通过计算现有的实际应力,然后与构件的极限应力进行比较。

“混凝土设计”模块可以按照国际规范进行各种设计验算。 可以设计杆件、面和柱,以及进行冲切设计和变形分析。

“木结构设计”模块可以按照不同规范对木杆件进行承载能力极限状态、正常使用极限状态设计和极限状态防火设计。

使用 RFEM 的砌体设计模块,您可以通过有限元法对砌体结构进行设计。 该模块是作为研究项目 DDMaS – 砌体结构设计数字化的一部分而开发的。 该材料模型以宏观建模的形式来表现砌块和砂浆材料组合的非线性行为。

使用 Aluminium Design 模块可以按照不同的规范对铝合金杆件进行承载能力极限状态和正常使用极限状态设计。
.png?mw=600&hash=49b6a289915d28aa461360f7308b092631b1446e)
使用 RFEM 的钢结构节点模块,您可以使用有限元模型对钢结构节点进行分析。 有限元模型在后台自动生成,可以通过简单地输入组件来控制。

“翘曲扭转 (7自由度)”模块允许在计算杆件时将截面翘曲作为额外的一个自由度进行考虑。

此外,该模块还通过为结构模型的每种材料指定单位成本和排放量来估算模型的成本或二氧化碳的排放量。

“木结构设计”模块可以按照不同规范对木杆件进行承载能力极限状态、正常使用极限状态设计和极限状态防火设计。

使用 Aluminium Design 模块可以按照不同的规范对铝合金杆件进行承载能力极限状态和正常使用极限状态设计。