水平方向的合力是在未释放相应构件且基于非双对称平面时得出的。

使用钢结构设计模块可以按照 AISC 360-22 进行钢结构设计。 在下文中,将对根据章节 F 与特征值分析计算弯扭屈曲的结果输出进行比较。

评估建筑物楼层位移对于通过限制位移量确保满意的结构性能至关重要。 位移过大可能会引起结构失稳,并可能对非结构构件(例如墙)造成损坏。 本文概述了根据 ASCE 7-22 和 RFEM 6 中的建筑模型模块设置层间位移的步骤。

规范 [1] 中的 ASCE 7-22 部分。 12.9.1.6 规定了在进行抗震设计的模态反应谱分析时应考虑 P-delta 效应的情况。 在 NBC 2020 [2] 的 Sent. 4.1.8.3.8.c 仅给出了一个简短的要求,即考虑重力荷载与变形结构的相互作用引起的侧移效应。 在某些情况下,进行地震分析时必须考虑二阶效应,也称为 P-delta。

在 RFEM 6 的钢结构设计模块中提供了三种类型的弯矩框架(普通、中间和特殊)。 按照 AISC 341-22 进行抗震设计结果,分为两部分: 杆件要求和连接要求。

在正常使用极限状态配置中可以调整截面的各种设计参数。 在那里可以控制变形和裂缝宽度分析中应用的截面条件。
可以激活以下设置:
- 由相关荷载计算的裂缝状态
- 由所有正常使用极限状态设计状况确定的包络裂缝状态
- 截面开裂状态 - 与荷载无关

在'编辑杆件'下的'设计支座和挠度'选项卡中,可以使用优化的输入窗口对杆件进行明确分段。 程序会自动使用悬臂梁或单跨支座梁的变形极限。
通过在杆件始端、末端和中间节点上定义相应方向的设计支座,程序会自动识别允许变形所涉及的构件和构件长度。 根据计算支座,它会自动识别是梁还是悬臂梁。 不再需要像以前的版本 (RFEM 5) 中那样手动分配。
使用'用户自定义长度'选项,可以在表格中修改参考长度。 始终默认使用相应的构件长度。 如果参照长度与杆件长度有偏差(例如弯曲杆件),则可以进行调整。

此外,该功能还有助于清晰地显示结果。 用户可以使用【裁剪平面】来剖切模型,为模型创建剖视图。 用户可以通过勾选“修改”后的平面内容, 这样,您可以清楚简单地显示例如相贯或实体的结果。

实体应力的结果可以在有限元中显示为彩色的三维点。
为您推荐产品