为了能够进行push-over计算,有必要将计算得出的承载力曲线转换为简化形式。 欧洲规范 EN 1998 中对 N2 法进行了描述。 本文将有助于解释根据 N2 方法进行双线性化的含义。
知识库 001829 | 计算push-over曲线的双线性化(N2法)





在 RFEM 6 中可以找到按照 AISI S100-16/CSA S136-16 进行冷弯型钢杆件设计的软件。 在“钢结构设计”模块中选择“AISC 360”或“CSA S16”作为标准结构,即可进行设计。 然后自动选择“AISI S100”或“CSA S136”进行冷弯成型设计。
RFEM 使用直接强度法 (DSM) 计算杆件的弹性屈曲荷载。 直接强度法提供了两种类型的解决方案,即数值(Finite Strip Method)和解析(规范)。 FSM 特征曲线和屈曲形状可以在截面下查看。

在 SHAPE-THIN 8 中按照规范 EN 1993-1-5 中章节 4.5 计算纵向加固屈曲区域的有效截面。
对至少有三个纵向加劲的屈曲区的临界屈曲应力的计算根据规范 EN 1993-1-5 中附录 A.1 ,对至少有一个或两个纵向加劲的屈曲区的计算根据规范 EN 1993-1-5 中附录 A.2受压区的加劲肋。 此外还要对加固进行抗扭计算。

Pushover 分析属于荷载组合中新定义的分析类型。 在这里您可以选择荷载水平分布和方向、选择恒定荷载、为计算目标位移选择所需的反应谱,以及为 Pushover 分析量身定制的 Pushover 设置。
在 Pushover 分析设置中,可以修改水平荷载的增量,并指定分析的停止条件。 此外在迭代确定目标位移时可以很容易地调整精度。

- 考虑钢结构塑性标准铰(FEMA 356,EN 1998-3)和材料的非线性行为(砌体结构、钢结构 - 双线性、用户自定义工作曲线)
- 直接从荷载工况或组合中导入质量,以便施加恒定的竖向荷载
- 用户定义的考虑水平荷载(振型或沿质量高度方向均匀分布的荷载)
- 确定计算的极限准则的 Pushover 曲线(倒塌或变形极限)
- 将 Pushover 曲线转换为承载力谱(ADRS 格式,单自由度体系)
- 承载力谱按照规范 EN 1998‑1:2010 + A1:2013 双线性化处理
- 将应用的反应谱转换为所需的反应谱(格式 ADRS)
- 按照 EC 8 确定目标位移(N2 法按照 Fahfar 2000)
- 输出容量和所需谱的图形比较
- 以图形方式评估预定义塑性铰的验收标准
- 显示目标位移迭代计算中所用值的结果
- 不同荷载水平下全部结构分析结果的访问权限

使用“材料非线性”模块,可以在 RFEM 中考虑材料的非线性,例如塑性各向同性、塑性正交各向异性、各向同性损伤。

使用 Pushover 分析模块,可以分析地震对建筑物的影响,从而评估建筑物的抗震能力。

“应力-应变分析”模块用于执行一般应力分析,通过计算现有的实际应力,然后与构件的极限应力进行比较。

现代化的三维结构分析和设计软件适用于梁结构的静力和动力分析,以及混凝土、钢、木结构和其他材料的设计。

“翘曲扭转 (7自由度)”模块允许在计算杆件时将截面翘曲作为额外的一个自由度进行考虑。

地震会显著影响建筑物的变形行为。 通过 pushover 分析可以对建筑物的变形行为进行分析,预测其地震反应。 使用“静力弹塑性分析”模块,可以分析地震对建筑物的影响,从而评估该建筑物的抗震能力。

用户可以通过多层结构模块对多层结构进行定义。 计算时可以考虑或不考虑剪切耦合。

优化和成本/CO2 排放估算模块通过粒子群优化算法 (PSO) 的人工智能 (AI) 技术为参数化模型和块寻找合适的参数,使其符合通用的优化准则。 此外,该模块还通过为结构模型的每种材料指定单位成本和排放量来估算模型的成本或二氧化碳的排放量。

“混凝土设计”模块可以按照国际规范进行各种设计验算。 可以设计杆件、面和柱,以及进行冲切设计和变形分析。

“木结构设计”模块可以按照不同规范对木杆件进行承载能力极限状态、正常使用极限状态设计和极限状态防火设计。

使用 RFEM 的砌体设计模块,您可以通过有限元法对砌体结构进行设计。 该模块是作为研究项目 DDMaS – 砌体结构设计数字化的一部分而开发的。 该材料模型以宏观建模的形式来表现砌块和砂浆材料组合的非线性行为。

使用 Aluminium Design 模块可以按照不同的规范对铝合金杆件进行承载能力极限状态和正常使用极限状态设计。
.png?mw=600&hash=49b6a289915d28aa461360f7308b092631b1446e)
使用 RFEM 的钢结构节点模块,您可以使用有限元模型对钢结构节点进行分析。 有限元模型在后台自动生成,可以通过简单地输入组件来控制。

此外,该模块还通过为结构模型的每种材料指定单位成本和排放量来估算模型的成本或二氧化碳的排放量。

“木结构设计”模块可以按照不同规范对木杆件进行承载能力极限状态、正常使用极限状态设计和极限状态防火设计。

使用 Aluminium Design 模块可以按照不同的规范对铝合金杆件进行承载能力极限状态和正常使用极限状态设计。

使用“施工阶段分析 (CSA)”模块可以在 RFEM 中考虑施工过程对结构(杆件、面和实体结构)的影响。

使用“时变分析 (TDA)”模块,可以在 RFEM 中考虑杆件和面的时变材料行为。 长期效应例如徐变、收缩和龄期会影响内力的分布,具体取决于结构。

“结构找形分析”模块可以找到受轴力作用的杆件和张力作用的面模型的最优形状。

使用“岩土工程分析”模块可以在 RFEM 中根据土样的属性来计算土体。 如何准确地计算地基土层影响着建筑物结构分析的质量。

使用 RFEM 的建筑模型模块,您可以使用楼层对建筑进行定义和操作。 之后,楼层可以通过多种方式进行调整。 有关楼层和整个模型(重心)的信息会显示在表格和图形中。