结构分析软件 RFEM 和 RSTAB 能够通过温度荷载来模拟结构构件的热应变。

在结构设计中,由于结构系统不稳定导致的计算中止有多种原因。 Einerseits kann er auf eine "reelle" Instabilität auf Grund einer Überlastung des Systems hinweisen, anderseits können jedoch auch Modellierungsungenauigkeiten für diese Fehlermeldung verantwortlich sein.

Die auch als Shifting bezeichnete Funktion erlaubt es, Verzweigungslastfaktoren ab einem selbst gewählten Startwert zu berechnen. Eine Ermittlung der Verzweigungslastfaktoren findet in der Regel vom kleinsten zum größten Laststeigerungsfaktor statt.

如果为了防止杆件在轴向压力下屈曲而设置了侧向支座,则必须确保该侧向支座能够防止实际屈曲。 因此,在本文中的目的是使用 Winter 模型确定侧向支座的理想弹簧刚度。

木结构中的弯扭屈曲位于上一个文章 | 示例 1 通过简单的示例说明了计算梁弯扭屈曲的临界弯矩 Mcrit或临界弯曲应力 σcrit的实际应用。 此处临界弯矩是通过考虑由加劲支撑形成的弹性地基来计算的。

实体应力的结果可以在有限元中显示为彩色的三维点。
.png?mw=512&hash=ea9bf0ab53a4fb0da5c4ed81d32d53360ab2820c)
RFEM 中节点自由度数目不再是全局计算参数( 3D 模型中每个网格节点 6 个自由度,在翘曲扭转分析中为 7 个自由度)。 每个节点通常被认为有不同数量的自由度,从而在计算中导致方程的数目是可变的。
这种修改可以提高计算速度,特别是对于可以显著简化结构体系的模型(例如桁架和膜结构)。

在 RFEM 中的结果导航器和表 4.0 中可以显示杆件、面和实体的扩展应变(例如重要的主应变、等效总应变等)。
例如,在进行面单元连接的塑性设计时显示主要的塑性应变。

RFEM 和 RSTAB 模型可以另存为 3D glTF 模型(*.glb 和 *.glTF 格式)。 然后在谷歌或 Baylon 的 3D 查看器中详细查看。 戴上虚拟现实眼镜(例如 Oculus)可以“漫步”在结构中。
用户可以按照说明书通过 JavaScript 将 3D glTF 模型集成到自己的网站中(例如在德儒巴网站下载结构分析模型): “在网络和 AR 中轻松显示交互式 3D 模型” .