在第1部分的第1部分中,已经在RF-CONCRETE Members和CONCRETE中选择了正常使用极限状态设计中的配筋尺寸布局标准。 现在我们来看看“寻找裂缝宽度设计中的经济钢筋”功能。
KB 000506 | 正常使用极限状态设计中纵向钢筋的尺寸2
链接

该技术文章采用钢筋混凝土梁的直接变形分析,考虑了徐变和收缩的长期影响。 为了按照欧洲规范 2 直接计算,这里以简支梁为例(EN 1992-1-1, 7.4.3)。 文章着重讨论了混凝土结构的受拉刚化现象,开裂状态下的分布系数(损伤参数)的收缩特性和徐变特性。
![跨度基于 [1] 中的图 5.2](/zh/webimage/039540/3493372/01_Abmessungen_EN.png?mw=512&hash=3cc425f1463bd5981b358d5889e3109e07ae1233)
为了在 RFEM 6 和“混凝土设计”模块中正确设计梁或 T 形梁,确定带肋杆件的“翼缘宽度”非常重要。 本文介绍了两跨梁的输入选项以及根据 EN 1992-1-1 计算翼缘尺寸。

例如,如果要使用纯面模型计算内力,但仍要在杆件模型上计算组件,则可以借助结果杆件来计算。

根据 EN 1992-1-1 [1],梁是指跨度不小于截面总高度 3 倍的杆件。 否则,该结构单元应视为深梁。 深梁(即跨度小于截面高度 3 倍的梁)的行为不同于正常梁(即跨度是截面高度的 3 倍的梁)的行为。
然而,在分析钢筋混凝土结构的构件时,通常需要对深梁进行设计,因为它们通常用于门窗门楣、竖立和下立梁、多层板之间的连接以及框架体系。
然而,在分析钢筋混凝土结构的构件时,通常需要对深梁进行设计,因为它们通常用于门窗门楣、竖立和下立梁、多层板之间的连接以及框架体系。

使用“混凝土设计”模块,您可以根据欧洲规范 EN 1992-1-1 中章节 6.8 对杆件和面进行疲劳验算。
在设计配置中可以选择两种疲劳设计方法或设计水平:
- 设计等级 1: 根据 1953 年的简化规范转到 6.8.6 和 6.8.7(2): 根据 EN 1992-1-1 中的章节 6.8.6 (2) 和 EN 1990 中的公式,对于频遇作用组合,采用简化准则。平面荷载 (6.15b) 修改为考虑正常使用极限状态的交通荷载。 按照 6.8.6 验算钢筋的最大应力范围。 混凝土压应力按照 6.8.7(2) 的规定,通过容许应力的上限和下限来确定。
- 分析水平 2: 等效损伤应力设计 acc.照 6.8.5 和 6.8.7(1) (简化疲劳验算): 疲劳组合的设计按照欧洲规范 EN 1992-1-1 中章节 6.8.3 中的等效损伤应力范围进行计算。以及具体定义的循环作用Qfat ,

在混凝土设计模块中,可以按照欧洲规范 EC 8 对钢筋混凝土杆件进行抗震设计。 其中包括以下功能:
- 抗震设计配置
- 延性等级 DCL、DCM、DCH 的区别
- 从动力分析传递行为系数的选项
- 检查性能系数的限值
- 能力设计 "强柱-弱梁"
- 弯曲延性系数的详细说明和特殊规则
- 局部延性的细化和特殊规则
为您推荐产品