钢结构节点模块功能
简要介绍
- 自动生成有限元分析模型:模块会在后台自动创建钢结构连接的有限元模型。
- 考虑所有内力:在计算和设计验算时包括了所有内力(N、Vy、Vz、My、Mz、MT),并且不限于平面荷载。
- 荷载自动传递:所有的荷载组合都会自动传递到连接的有限元分析模型中。 荷载直接从 RFEM 传递,无需手动输入。
- 高效建模:该模块可以为复杂连接情况下的建模工作节省大量时间。 所创建的有限元分析模型可以保存并用于进一步的详细分析。
- 可扩展的数据库:模块是一个庞大且可扩展的数据库,其中包含预定义的钢结构连接模板。
- 适用性广泛:该模块适用于任何类型和形状的连接,几乎兼容所有轧制、焊接、组合和薄壁截面。
Dlubal 中心节点库
Dlubal 中心里有一个庞大的钢结构节点模块数据库,
您可以直接从模块访问该库,并将预定义的连接分配给相应的节点。 您也可以将用户自定义连接保存在 Dlubal 中心的库中。
最新信息: 基础块连接节点的“底板”部分
用户可以使用“底板”组件设计以及锚固锚固后的锚固节点。 在这种情况下,板件、焊缝、锚固以及钢筋和混凝土之间的相互作用都会被计算在内。
连接的真实性检查和碰撞检查
- 在输入数据的同时,程序会进行真实性检查,以便快速检测出缺少的输入数据或相抵触的情况。
- 如果出现错误,则会显示一条信息来描述问题。
钢结构节点设计状况
- 连接组件的设计按照美国规范 AISC 360-16 和欧洲规范 EN 1993-1-8。
- 激活模块后,必须在“荷载工况和组合”对话框中激活钢结构节点设计。
- 用户需要使用“结构稳定性”模块来计算节点连接的稳定性(屈曲)模块。
- 可以通过表格或顶部栏中的图标启动计算。
设计按照 AISC 360 和 EN 1993-1-8
该程序可以在以下方面为您提供支持: 它根据有限元分析模型确定螺栓力,并自动进行评估。 该模块可以根据规范对螺栓在受拉、受剪、承压、冲切等失效情况下的承载力设计,并清楚地显示所有必要的系数。
要进行焊缝设计吗? 焊缝作为弹塑性面单元建模,其应力从有限元分析模型中读取。 设置塑性准则来表示按照 AISC J2-4、J2-5(焊缝强度)和 J2-2(母材强度)的失效标准。 可以使用欧洲规范 EN 1993-1-8 的国家附录中的分项系数进行设计。
连接板件通过比较实际塑性应变与容许的塑性应变进行塑性设计。 根据 EN 1993-1-5 附录 C,默认设置为 5%,但可以通过用户自定义进行调整,例如 AISC 360 的 5%。
计算初始刚度 Sj,ini并自动传递到全局结构
初始刚度Sj,ini是决定一个节点是刚性的、非刚性的还是铰接的。
在“钢结构节点”模块中,可以按照欧洲规范(EN 1993-1-8 部分 5.2.2)和美国规范 (AISC 360-16 Cl. E3.4) 与内力 N、My 和/或 Mz的关系。
通过选择自动传递初始刚度,可以在 RFEM 中将杆件末端铰接刚度直接传递。 然后重新计算整个结构,并且在连接模型设计中自动采用由此产生的内力作为荷载。
这种自动迭代过程无需手动导出和导入数据,从而减少了工作量并将可能的错误来源减到最少。
说明性视频: 计算初始刚度 Sj,ini组合钢截面和薄壁型钢构件的节点设计
使用“钢结构节点”模块,您可以进行组合截面构件连接节点设计。 此外,您还可以对 RFEM 库中几乎所有的薄壁截面构件进行节点设计。
转到说明视频用于焊缝设计的塑性材料模型
在这里,焊缝设计变得轻而易举。 使用专门开发的材料模型“正交各向异性 | 塑性 | 焊缝(面)”,您可以通过塑性计算所有应力分量。 垂直方向的应力 τ 也被考虑为塑性。
使用该材料模型,您可以更有效地设计焊缝。
说明性视频矩形空心截面连接
对于矩形截面,通常可以通过焊缝直接连接。 但是,您也可以以相同的方式将它们连接到其他横截面。 此外,端板等其他组件可以帮助您将矩形截面连接到其他结构组件。
“板”组件,几何形状为多边形
在“钢结构节点”模块中,您可以将板布置成各种几何形状。 除了“矩形”和“圆形”外,还可以选择“多边形”按钮。 用户可以通过输入节点的坐标来定义多边形。
使用“结果梁”和面模型的钢节点设计
在“钢结构节点”模块中,不仅可以使用“梁”和“桁架”等常见杆件类型,还可以使用“结果梁”杆件类型以及由面单元创建的截面。 对于“结果梁”应选择一个合适的截面,对于“面模型”可以借助杆件编辑器定义开孔。
计算价格
该价格适用于United States。