Introdução
Na norma anterior ACI 318-14 {%>#Refer [2]]] , são especificadas oito equações para o cálculo da resistência ao corte Vc - sem considerar os limites de aplicação. O utilizador pode escolher entre um método de cálculo simplificado e um exato. Um dos objetivos do novo conceito na norma ACI 318-19 era reduzir as equações de dimensionamento para Vc. Além disso, o conceito deve considerar a influência da altura do componente, a relação da armadura longitudinal e da tensão normal.
Resistência ao corte Vc De acordo com ACI 318-19
For non-prestressed reinforced concrete beams, the shear resistance Vc is calculated according to ACI 318-19 [1] with Equations a) to c) from Table 22.5.5.1. With the new Equations b) and c), the member height, the longitudinal reinforcement ratio, and the normal stress now influence the shear strength, Vc. Equation a) was basically taken from ACI 318-14 [2].
The determination of the shear resistance Vc according to Table 22.5.5.1 [1], depends on the inserted shear reinforcement Av. Se a armadura de corte mínima Av, min de acordo com 9.6.3.4 estiver disponível ou for excedida, o cálculo de Vc pode ser realizado de acordo com a Equação a)
ou a Equação b)
from Table 22.5.5.1 [1].
If you compare the two equations shown above, you can see that in Equation b), the factor 2 λ has been replaced by the term 8 λ (ρw)1/3. A relação de armadura longitudinal ρw influencia o cálculo da resistência de corte Vc. Image 01 shows the distribution of 8 λ (ρw)1/3 as a function of ρw (with λ = 1).
Para λ = 1,0, 8 λ (ρw ) 1/3 torna-se igual ao valor 2 λ para uma relação de armadura longitudinal ρw = 1,56%. When calculating Vc, Equation a) for λ= 1 and a longitudinal reinforcement ratio ρw (greater than) 1.56% and Equation b) for λ= 1 and ρw > 1.56% results in the greater concrete shear resistance. The standard allows the application of both equations. Therefore, the maximum value from Equations a) and b) can be used for a cost-effective design.
For beams with shear reinforcement Av less than Av,min, Equation c) of Table 22.5.5.1 [1] is to be used according to ACI 318-19 [1].
Exceto para a variável λs , a equação c) é semelhante à equação b) discutida acima. For structural components with little or no shear reinforcement, the concrete shear resistance Vc decreases with increasing structural component height. Através da introdução do fator λs' é considerado o "Efeito de tamanho". The factor λs is determined according to Equation 22.5.5.1.3 [1] as follows.
The reduction of the shear resistance Vc,c by the factor λs is only effective for structural heights d (greater than) 10in. Image 02 shows the distribution of term 8 λs λ (ρw)1/3 for the different effective depths d.
Exemplo: Calcular a armadura de corte necessária de acordo com a ACI 318-19
The following section describes how to determine the required shear reinforcement according to the new concept of ACI 318-19 [1] for a reinforced concrete beam, which was designed in a previous Knowledge Base Article according to ACI 318-14 [2]. Image 03 shows the structural model and the design load.
The rectangular cross-section has the dimensions 25 in. · 11 in. The concrete has a compressive strength of f'c = 5,000 psi. The yield strength of the reinforcing steel used is fy = 60,000 psi. The effective depth of the tension reinforcement is applied with d = 22.5 in. The design value of the acting shear force Vu at a distance d from the support is 61.10 kips.
The determination of the shear resistance Vs according to Table 22.5.5.1 [1] depends on the height of the inserted shear reinforcement Av. The prerequisite for using Equations a) and b) is that the minimum shear reinforcement according to 9.6.3.4 [1] is applied. For this reason, a check is performed in the first step as to whether a minimum reinforcement has to be considered according to 9.6.3.1 [1].
61,10 kips > 13,13 kips
Isso requer uma armadura de corte mínima. This is calculated according to 9.6.3.4 [1], as follows.
av, min = 0,12 in²/ft
When considering the minimum shear reinforcement, the concrete shear resistance Vc can now be determined with Equations a) or b) of Table 22.5.5.1 [1]. The shear resistance Vc,a according to Equation a) is calculated as Vc,a = 35.0 kips. To apply Equation b), it is necessary to know the longitudinal reinforcement ratio ρw. To be able to compare the calculated shear reinforcement with the calculation result of the Concrete Design Add-on, ρw is determined with the required longitudinal reinforcement at the distance d from the support. A bending moment of My,u = 1533 kip-in results in a longitudinal reinforcement of As,req = 1.33 in², which is ρw = 0.536%. Image 01 shows the influence of the longitudinal reinforcement ratio ρw on the calculation of Vc,b. Since ρw (less than) 1.5% here, Equation b) will result in a lower shear resistance Vc,b than Equation a) and we can skip determining Vc,b. However, we calculate Vc,b to show it.
Vc, b = 24,52 kips
Conforme esperado, a Equação b) fornece uma resistência ao corte menor do que a Equação a).
Additionally, the shear resistance Vc is limited to the maximum value Vc,max according to 22.5.5.1.1 [1].
av,min = 0.12 in²/ft
When considering the minimum shear reinforcement, the concrete shear resistance Vc can now be determined with Equations a) or b) of Table 22.5.5.1 [1].
A resistência ao corte Vc, a de acordo com a Equação a) é calculada como Vc, a = 35,0 kips.
Para aplicar a Equação b), é necessário conhecer a relação de armadura longitudinal ρw. To be able to compare the calculated shear reinforcement with the calculation result of the Concrete Design Add-on, ρw is determined with the required longitudinal reinforcement at the distance d from the support. A bending moment of My,u = 1533 kip-in results in a longitudinal reinforcement of As,req = 1.33 in², which is ρw = 0.536%. Image 01 shows the influence of the longitudinal reinforcement ratio ρw on the calculation of Vc,b. Since ρw (greater than) 1.5% here, Equation b) will result in a lower shear resistance Vc,b than Equation a) and we can skip determining Vc,b. However, we calculate Vc,b to show it.
Vc, b = 24,52 kips
Conforme esperado, a Equação b) fornece uma resistência ao corte menor do que a Equação a).
Additionally, the shear resistance Vc is limited to the maximum value Vc,max according to 22.5.5.1.1 [1].
Vc, max = 87,5 kips
Finalmente, o cálculo da armadura de corte necessária resulta na seguinte resistência da força de corte do betão Vc.
Vc = máx [Vc, a ; Vc, b ] ≤ Vc, max
Vc = [35,0 kips; 24,5 kips] ≤ 87,5 kips
Vc = 35,0 kips
The required shear reinforcement req. av is calculated as follows:
Req. av = 0.41 in²/ft ≥ 0.12 in2/ft
The reinforced concrete design according to ACI 318-19 [1] can be performed with RFEM 6. The Concrete Design Add-on also calculates a required shear reinforcement of 0.43 in²/ft at the distance d from the support (see Image 04).
Atenção: The results in RFEM 6 differ from the hand calculations slightly due to a more accurate value for the Depth (d) calculated. RFEM 6 takes into account that there are multiple layers of tension reinforcement where the hand calculations assume a single layer.
Finalmente, a capacidade de carga máxima da escora de compressão do betão da treliça de corte é verificada de acordo com a Secção 22.5.1.2.
61.10 kips ≤ 175.00 kips.
A verificação de corte de acordo com ACI 318-19 é cumprida.
Conforme esperado, a Equação b) fornece uma resistência ao corte menor do que a Equação a).
Additionally, the shear resistance Vc is limited to the maximum value Vc,max according to 22.5.5.1.1 [1].
Resumo
ACI 318-19 [1] introduced a new concept to determine the shear resistance Vc. Foi possível reduzir o número de equações de dimensionamento potencial da versão anterior para três equações, tendo em consideração a influência da tensão normal, da altura do componente e da taxa de armadura longitudinal. Isto simplifica o cálculo da resistência ao corte Vc.