Введение
В предыдущей норме ACI 318-14 [2] были указаны восемь уравнений для расчета прочности на сдвиг Vc - без учета пределов применения. Пользователь, кроме того, может выбрать между упрощенным и точным методом расчета. Целью нового концепта в ACI 318-19 было, кроме прочего, уменьшение количества расчетных уравнений для Vc. Концепт должен был также учесть влияние высоты элемента, коэффициента продольного армирования и осевого напряжения.
Прочность на сдвиг Vc по норме ACI 318-19
For non-prestressed reinforced concrete beams, the shear resistance Vc is calculated according to ACI 318-19 [1] with Equations a) to c) from Table 22.5.5.1. With the new Equations b) and c), the member height, the longitudinal reinforcement ratio, and the normal stress now influence the shear strength, Vc. Equation a) was basically taken from ACI 318-14 [2].
The determination of the shear resistance Vc according to Table 22.5.5.1 [1], depends on the inserted shear reinforcement Av. При наличии или превышении объема минимального работающего на сдвиг армирования Av,min по п. 9.6.3.4 расчет Vc может быть выполнен по уравнению а)
или по уравнению b)
from Table 22.5.5.1 [1].
If you compare the two equations shown above, you can see that in Equation b), the factor 2 λ has been replaced by the term 8 λ (ρw)1/3. Коэффициент продольной арматуры ρw таким образом влияет на расчет прочности на сдвиг Vc. Image 01 shows the distribution of 8 λ (ρw)1/3 as a function of ρw (with λ = 1).
При λ = 1,0 выражение 8 λ (ρw)1/3 равно значению 2 λ при коэффициенте продольной арматуры ρw = 1,56 %. When calculating Vc, Equation a) for λ= 1 and a longitudinal reinforcement ratio ρw (greater than) 1.56% and Equation b) for λ= 1 and ρw > 1.56% results in the greater concrete shear resistance. The standard allows the application of both equations. Therefore, the maximum value from Equations a) and b) can be used for a cost-effective design.
For beams with shear reinforcement Av less than Av,min, Equation c) of Table 22.5.5.1 [1] is to be used according to ACI 318-19 [1].
За исключением переменной λs уравнение c) аналогично уравнению b), рассмотренному выше. For structural components with little or no shear reinforcement, the concrete shear resistance Vc decreases with increasing structural component height. При вводе коэффициента λs учитывается так называемый «Size Effect». The factor λs is determined according to Equation 22.5.5.1.3 [1] as follows.
The reduction of the shear resistance Vc,c by the factor λs is only effective for structural heights d (greater than) 10in. На рисунке 02 показана диаграмма выражения 8 λs λ (ρw)1/3 при различных значениях статической полезной высоты d.
Пример: Рассчитать требуемую работающую на сдвиг арматуру по ACI 318-19
The following section describes how to determine the required shear reinforcement according to the new concept of ACI 318-19 [1] for a reinforced concrete beam, which was designed in a previous Knowledge Base Article according to ACI 318-14 [2]. На рисунке 03 показаны конструктивная модель и расчетные нагрузки.
The rectangular cross-section has the dimensions 25 in. · 11 in. The concrete has a compressive strength of f'c = 5,000 psi. The yield strength of the reinforcing steel used is fy = 60,000 psi. The effective depth of the tension reinforcement is applied with d = 22.5 in. The design value of the acting shear force Vu at a distance d from the support is 61.10 kips.
The determination of the shear resistance Vs according to Table 22.5.5.1 [1] depends on the height of the inserted shear reinforcement Av. The prerequisite for using Equations a) and b) is that the minimum shear reinforcement according to 9.6.3.4 [1] is applied. For this reason, a check is performed in the first step as to whether a minimum reinforcement has to be considered according to 9.6.3.1 [1].
61,10 тыс. фунтов > 13,13 тыс. фунтов
Требуется минимальное поперечное армирование. This is calculated according to 9.6.3.4 [1], as follows.
av,min = 0,12 кв. дюймов/фут
When considering the minimum shear reinforcement, the concrete shear resistance Vc can now be determined with Equations a) or b) of Table 22.5.5.1 [1]. The shear resistance Vc,a according to Equation a) is calculated as Vc,a = 35.0 kips. To apply Equation b), it is necessary to know the longitudinal reinforcement ratio ρw. To be able to compare the calculated shear reinforcement with the calculation result of the Concrete Design Add-on, ρw is determined with the required longitudinal reinforcement at the distance d from the support. A bending moment of My,u = 1533 kip-in results in a longitudinal reinforcement of As,req = 1.33 in², which is ρw = 0.536%. Image 01 shows the influence of the longitudinal reinforcement ratio ρw on the calculation of Vc,b. Since ρw (less than) 1.5% here, Equation b) will result in a lower shear resistance Vc,b than Equation a) and we can skip determining Vc,b. However, we calculate Vc,b to show it.
Vc,b = 24,52 тыс. фунтов
Как и ожидалось, по уравнению b) получена более низкая прочность на сдвиг, чем по уравнению а).
Additionally, the shear resistance Vc is limited to the maximum value Vc,max according to 22.5.5.1.1 [1].
av,min = 0.12 in²/ft
When considering the minimum shear reinforcement, the concrete shear resistance Vc can now be determined with Equations a) or b) of Table 22.5.5.1 [1].
Прочность на сдвиг Vc,a по уравнению a) равна Vc,a = 35,0 тыс. фунтов.
Для применения уравнения b) необходимо знать значение коэффициента продольного армирования ρw. To be able to compare the calculated shear reinforcement with the calculation result of the Concrete Design Add-on, ρw is determined with the required longitudinal reinforcement at the distance d from the support. A bending moment of My,u = 1533 kip-in results in a longitudinal reinforcement of As,req = 1.33 in², which is ρw = 0.536%. Image 01 shows the influence of the longitudinal reinforcement ratio ρw on the calculation of Vc,b. Since ρw (greater than) 1.5% here, Equation b) will result in a lower shear resistance Vc,b than Equation a) and we can skip determining Vc,b. However, we calculate Vc,b to show it.
Vc,b = 24,52 тыс. фунтов
Как и ожидалось, по уравнению b) получена более низкая прочность на сдвиг, чем по уравнению а).
Additionally, the shear resistance Vc is limited to the maximum value Vc,max according to 22.5.5.1.1 [1].
Vc,max = 87,5 тыс. фунтов
Наконец, для расчета требуемой работающей на сдвиг арматуры получена следующая применяемая прочность бетона на сдвиг Vc.
Vc = max [Vc,a ; Vc,b ] ≤ Vc,max
Vc = [35,0 тыс. фунтов; 24,5 тыс. фунтов] ≤ 87,5 тыс. фунтов
Vc = 35,0 тыс. фунтов
The required shear reinforcement req. av is calculated as follows:
Req. av = 0.41 in²/ft ≥ 0.12 in2/ft
The reinforced concrete design according to ACI 318-19 [1] can be performed with RFEM 6. The Concrete Design Add-on also calculates a required shear reinforcement of 0.43 in²/ft at the distance d from the support (see Image 04).
Внимание! The results in RFEM 6 differ from the hand calculations slightly due to a more accurate value for the Depth (d) calculated. RFEM 6 takes into account that there are multiple layers of tension reinforcement where the hand calculations assume a single layer.
Наконец, выполняется проверка максимальной несущей способности сжатого раскоса фермочной конструкции по п. 22.5.1.2.
61.10 kips ≤ 175.00 kips.
Расчет на сдвиг по норме ACI 318-19 выполнен.
Как и ожидалось, по уравнению b) получена более низкая прочность на сдвиг, чем по уравнению а).
Additionally, the shear resistance Vc is limited to the maximum value Vc,max according to 22.5.5.1.1 [1].
Заключение
ACI 318-19 [1] introduced a new concept to determine the shear resistance Vc. При этом удалось сократить до трех количество возможных расчетных уравнений из предыдущей версии и включить в расчет влияние нормальных напряжений, высоты элемента и коэффициента продольного армирования. Это упростило расчет прочности на сдвиг Vc.