亲自来体验我们的计算内核 - 优化的网络和多核处理器技术吧! 这样可以通过多个处理器并行计算线性荷载工况和荷载组合,而无需额外占用内存。 刚度矩阵只需建立一次。 对于大型体系,可以使用快速直接求解器进行计算。
对于需要计算很多荷载组合的模型,可同时启动多个求解器(每个内核一个)进行计算。 每个求解器计算一个荷载组合,提高内核的利用率,更快地得出结果。
用户可以在图表中跟踪计算过程中的变形发展,从而准确评估收敛行为。

使用模态相关系数(MRF)可以判断构件是否发生了屈曲。 其计算是基于每个构件的相对弹性变形能。
通过模态相关系数可以区分局部和整体屈曲模态。 如果结构中多个构件的模态相关系数的值很大,比如大于 20%,则很可能会发生整体失稳或局部失稳。 如果某一屈曲模态的所有模态相关系数的总和约为 100%,则可能出现局部失稳现象(例如单个构件屈曲)。
此外,模态相关系数还可以用于,例如在稳定性分析中来确定杆件的临界荷载和等效屈曲长度。 如果构件的 MRF 值较小(例如<20%),则不考虑失稳。
MRF 值显示在有效长度和临界荷载(按振型)结果表中,该表可通过“稳定性分析” -- “结果(按杆件)” -- “有效长度和临界荷载(按振型)”获得。

与附加模块 RF-/STABILITY (RFEM 5) 和 RSBUCK (RSTAB 8) 相比,在 RFEM 6 / RSTAB 9 的结构稳定性模块中增加了以下新功能:
- 作为荷载工况或荷载组合的属性选项激活
- 通过组合向导自动激活多种荷载状况的稳定性计算
- 根据用户定义停止增加荷载
- 振型标准化修改无需重新计算
- 结果表带有筛选功能

- 计算由杆件、壳和实体单元组成的模型
- 非线性稳定性分析
- 选择考虑初始预应力引起的轴力
- 多个方程求解器,可有效计算各种结构模型
- Optionale Berücksichtigung der Steifigkeitsänderungen über Einstellungen zur Strukturmodifikation
- 按照用户定义的荷载增量系数(Shift-Methode)计算稳定性图形
- 选择计算非稳定模型的振型(用于找出不稳定的原因)
- 显示稳定性图形
- 缺陷的确定基础

如果程序中存在荷载工况或荷载组合,则程序会激活稳定性计算, 对于初始预应力,您可以定义另一个荷载工况。
那么用户需要指定是进行线性还是非线性分析。 可以根据应用情况选择一种合适的计算方法来确定特征值。 不集成在面上的杆件通常显示为带有两个有限元节点的杆件单元。 这样的单元不能计算单个杆件的局部屈曲。 这就是'这就是为什么您可以选择自动划分杆件的原因。
为您推荐产品