固有振动分析
模态分析 | 产品特性
- 自动考虑结构自重的质量
- 直接导入荷载工况或荷载组合中的质量
- 可以在荷载工况中直接定义附加质量(节点、线或面质量,以及惯性质量)
- 可选忽略质量(例如基础质量)
- 不同荷载工况和荷载组合中的质量组合
- 为各种规范预设组合系数(EC 8、SIA 261、ASCE 7...)
- 可选导入初始状态(例如考虑预应力和缺陷)
- 考虑结构调整
- 考虑失效的支座或杆件/面/实体
- 定义多个模态分析(例如分析不同的质量或刚度调整)
- 选择质量矩阵类型(对角矩阵、一致矩阵、单位矩阵),并且可以自定义平移和转动自由度
- 确定模态振型数量的方法(用户自定义、自动 - 达到有效模态质量系数,自动 - 达到最大自振频率 - 仅在 RSTAB 中可用)
- 计算节点或有限元网格节点的振型和质量
- 特征值、角频率、自振频率和周期的结果
- 模态质量、有效模态质量、模态质量系数和参与系数的输出
- 网格点中质量的表格和图形输出
- 图形显示和动画显示振型
- 多种按比例显示振型的功能
- 计算结果在打印报告中的数值和图形说明
模态分析 | 输入
在模态分析设置中,可以输入计算自振频率所需的全部参数。 例如,质量形状和特征值求解器。
“模态分析”模块可以计算结构的最小特征值。 可以调整特征值的数目或自动确定。 因此,要么达到有效振型质量系数,要么达到最大自振频率。 质量是直接从荷载工况和荷载组合中导入的。 用户可以选择考虑整体质量、沿全局 Z 方向的分荷载或只考虑重力方向上的分荷载。
可以在节点、线、杆件或面的位置手动定义附加质量。 此外,您可以通过导入轴力或荷载工况或荷载组合的刚度调整来影响刚度矩阵。
模态分析 | 计算
RFEM 中三种功能强大的特征值求解器:
- 特征多项式的根
- Lanczos 方法
- 子空间迭代
RSTAB 内置有以下两种特征值求解器:
- 子空间迭代
- 转换反幂法
选择特征值的计算方法主要取决于模型的大小。
模态分析 | 结果输出
程序计算完毕后,会列出所有的特征值、自振频率和周期。 这些结果窗口都集成在主软件 RFEM/RSTAB 中。 在表格中可以找到结构的所有振型,也可以选择以图形方式或动画方式显示。
所有的结果表格和图形都包含在 RFEM/RSTAB 计算书中。 这样可以确保文档井井有条。 还可以将表格导出到 MS Excel。
计算价格

该价格适用于United States。


这篇文章的目的是根据欧洲规范 2 中的一根钢筋混凝土细长柱进行设计。



“材料非线性”模块包括了混凝土结构构件的 | “各向异性损伤”材料模型。 使用该材料模型,可以考虑杆件、面和实体的混凝土损伤。
对于应力-应变图,您可以有三种方式来定义,它们分别是通过表格定义,使用参数生成,以及使用规范中的预定义参数。 此外,还可以考虑拉伸刚化效应。
对于钢筋,可以选择两种非线性材料模型, | 它们是“各向同性 | 塑性(杆件)”和 | “各向同性 | 非线性弹性(杆件)”。
此外,还可以通过最近发布的“静力分析 | 徐变与收缩(线性)”分析类型 | 来考虑徐变和收缩效应。 徐变通过增加混凝土的变形(通过一个因子 1+phi 拉伸应力-应变曲线)来考虑,而收缩则通过在分析前就给混凝土施加一个初始的变形(预应变)来考虑。 如果需要进行更精确的分析,您可以使用“时变分析(TDA)”的模块。

在混凝土设计中,可以根据不同设计状况在表格中显示配筋结果。
为什么有效抗剪深度与抗剪验算中使用的有效抗剪深度不同?
如何了解必需配筋的确定过程?