在 RFEM 中计算
使用隐式 Newmark 分析或显式分析进行非线性时程分析。 两者都是时间直接积分方法。 隐式分析只需要很小的时间步,就可以提供精确的结果。 显式分析会自动确定所需的时间步,以确保解的稳定性。 显式分析适用于短时间激振,例如脉冲激振或爆炸激振。
RSTAB 中的计算
使用显式分析方法进行非线性时程分析。 这是一种直接的时间积分方法,并且会自动确定所需的时间步,以提供解决方案的稳定性。
在 RFEM 中计算
使用隐式 Newmark 分析或显式分析进行非线性时程分析。 两者都是时间直接积分方法。 隐式分析只需要很小的时间步,就可以提供精确的结果。 显式分析会自动确定所需的时间步,以确保解的稳定性。 显式分析适用于短时间激振,例如脉冲激振或爆炸激振。
RSTAB 中的计算
使用显式分析方法进行非线性时程分析。 这是一种直接的时间积分方法,并且会自动确定所需的时间步,以提供解决方案的稳定性。
使用时变分析 (TDA) 模块可以考虑杆件和面的时变材料行为。 长期效应例如徐变、收缩和龄期会影响内力的分布,具体取决于结构。 Darauf bereiten Sie sich mit diesem Add-On optimal vor.
您是否已经激活了时变分析(TDA)模块? 很好,现在您可以将时间数据添加到荷载工况中。 在定义了荷载的始端和末端之后,还要考虑荷载末端的徐变影响。 使用该版本可以对钢筋混凝土杆件的徐变效应进行建模。
上述计算按照非线性流变模型(Kelvin-Maxwell 流变模型)进行。
计算成功吗? 现在,您可以将计算得出的内力以表格和图形的形式输出,