非线性系统的变形能力分析
静力弹塑性分析(Pushover) | 产品特性
- 考虑钢结构塑性标准铰(FEMA 356,EN 1998-3)和材料的非线性行为(砌体结构、钢结构 - 双线性、用户自定义工作曲线)
- 直接从荷载工况或组合中导入质量,以便施加恒定的竖向荷载
- 用户定义的考虑水平荷载(振型或沿质量高度方向均匀分布的荷载)
- 确定计算的极限准则的 Pushover 曲线(倒塌或变形极限)
- 将 Pushover 曲线转换为承载力谱(ADRS 格式,单自由度体系)
- 承载力谱按照规范 EN 1998‑1:2010 + A1:2013 双线性化处理
- 将应用的反应谱转换为所需的反应谱(格式 ADRS)
- 按照 EC 8 确定目标位移(N2 法按照 Fahfar 2000)
- 输出容量和所需谱的图形比较
- 以图形方式评估预定义塑性铰的验收标准
- 显示目标位移迭代计算中所用值的结果
- 不同荷载水平下全部结构分析结果的访问权限
静力弹塑性分析(Pushover) | 输入
Pushover 分析属于荷载组合中新定义的分析类型。 在这里您可以选择荷载水平分布和方向、选择恒定荷载、为计算目标位移选择所需的反应谱,以及为 Pushover 分析量身定制的 Pushover 设置。
在 Pushover 分析设置中,可以修改水平荷载的增量,并指定分析的停止条件。 此外在迭代确定目标位移时可以很容易地调整精度。
静力弹塑性分析(Pushover) | 计算和结果
在计算过程中,水平荷载会以荷载增量的形式增加。 对每个荷载步都进行静力非线性分析,直到达到指定的极限条件。
Pushover 分析的结果是广泛的。 一方面,对结构进行变形行为分析。 这可以通过系统的力-变形曲线(承载力曲线)来表示。 另一方面,在 ADRS(加速度-位移反应谱)对话框中可以显示反应谱效应。 根据这两个结果,程序会自动确定目标位移。 计算过程可以通过图形和表格方式进行评估。
然后可以以图形方式对各个验收准则进行评估和评估(目标位移步,以及所有其他荷载步)。 对于单独的荷载步,静力分析的结果也可以显示。
计算价格

该价格适用于United States。


这篇文章的目的是根据欧洲规范 2 中的一根钢筋混凝土细长柱进行设计。



“材料非线性”模块包括了混凝土结构构件的 | “各向异性损伤”材料模型。 使用该材料模型,可以考虑杆件、面和实体的混凝土损伤。
对于应力-应变图,您可以有三种方式来定义,它们分别是通过表格定义,使用参数生成,以及使用规范中的预定义参数。 此外,还可以考虑拉伸刚化效应。
对于钢筋,可以选择两种非线性材料模型, | 它们是“各向同性 | 塑性(杆件)”和 | “各向同性 | 非线性弹性(杆件)”。
此外,还可以通过最近发布的“静力分析 | 徐变与收缩(线性)”分析类型 | 来考虑徐变和收缩效应。 徐变通过增加混凝土的变形(通过一个因子 1+phi 拉伸应力-应变曲线)来考虑,而收缩则通过在分析前就给混凝土施加一个初始的变形(预应变)来考虑。 如果需要进行更精确的分析,您可以使用“时变分析(TDA)”的模块。

在混凝土设计中,可以根据不同设计状况在表格中显示配筋结果。
为什么有效抗剪深度与抗剪验算中使用的有效抗剪深度不同?
如何了解必需配筋的确定过程?