EN 1991-1-2 (3.1) 中的净热通量

如果在窗口 1.6 的“钢筋”中选择了“设计现有的钢筋”选项,那么 RFEM 的 RF-CONCRETE Members 或者 RSTAB 的 CONCRETE Members 会自动为用户提供钢筋建议。

在 RFEM 5 和 RSTAB 8 中,您可以在附加模块 RF‑/FOUNDATION Pro 中按照 EN 1992‑1‑1 和 EN 1997‑1 设计基础。

根据最新的 ACI 318-19 标准,重新定义了确定混凝土抗剪承载力 Vc的长期关系。 使用新方法,杆件高度、纵向配筋率和正应力现在都会影响抗剪强度 Vc。 本文介绍了抗剪承载力设计的更新方法,并举例说明了如何应用。

根据 DAfStb(德国钢筋混凝土协会)第 631 卷 2.4 章的规定,如果在洞口区域墙体对楼板的支承不连续,那么楼板的承重行为就会发生变化。 根据洞口区域的长度和板的厚度,需要采取措施对洞口区域的天花板进行分析。

“材料非线性”模块包括了混凝土结构构件的 | “各向异性损伤”材料模型。 使用该材料模型,可以考虑杆件、面和实体的混凝土损伤。
对于应力-应变图,您可以有三种方式来定义,它们分别是通过表格定义,使用参数生成,以及使用规范中的预定义参数。 此外,还可以考虑拉伸刚化效应。
对于钢筋,可以选择两种非线性材料模型, | 它们是“各向同性 | 塑性(杆件)”和 | “各向同性 | 非线性弹性(杆件)”。
此外,还可以通过最近发布的“静力分析 | 徐变与收缩(线性)”分析类型 | 来考虑徐变和收缩效应。 徐变通过增加混凝土的变形(通过一个因子 1+phi 拉伸应力-应变曲线)来考虑,而收缩则通过在分析前就给混凝土施加一个初始的变形(预应变)来考虑。 如果需要进行更精确的分析,您可以使用“时变分析(TDA)”的模块。

在混凝土设计中,可以根据不同设计状况在表格中显示配筋结果。