固有振动分析
模态分析 | 导入质量
用户可以通过以下几种方法为模态分析定义质量。 虽然自动考虑自重质量,但是可以在模态分析类型的荷载工况中直接考虑荷载和质量。 您需要更多的选择吗? 选择是考虑全部荷载作为质量、考虑全局 Z 方向上的分量还是只考虑重力方向上的荷载分量。
此外,软件中还提供了另一种导入质量的选项: 手动定义荷载组合,模态分析中考虑的起始质量 您是否选择了设计规范? 然后创建一个组合类型为地震质量的设计状况。 程序会根据首选的设计规范自动计算用于模态分析的质量位置。 换句话说: 程序会根据所选规范中预设的组合系数创建一个荷载组合。 用于模态分析的质量。
模态分析 | 添加质量
除了静荷载外,是否还需要考虑其他荷载作为质量? 程序允许对节点、杆件、线和面荷载进行计算。 用户可以在定义荷载类型时选择质量荷载类型。 定义一个或多个 X、Y、Z 方向上的质量分量。 对于节点质量,还可以指定指定 X、Y 和 Z 轴的惯性矩,以便模拟更复杂的质量点。
模态分析 | 忽略质量
通常需要忽略质量。 当将模态分析的输出用于地震分析时,尤其如此。 为此在计算中需要在每个方向上都有 90% 的振型有效质量。 所有固定的节点和线支座的质量可以忽略不计。 在勾选该质量后,程序会自动为您停用相关质量。
用户可以手动选择在模态分析中忽略其质量的对象。 为了看得更清楚,我们在图中显示的是后者。 设置为用户自定义选项,并且选择分量质量的对象,忽略质量。
模态分析 | 导入初始状态
定义模态分析荷载工况的输入数据时,可以考虑一个荷载工况,其刚度代表模态分析的初始位置。 你是怎么做到的? 如图所示,在对话框中选择“考虑初始状态”选项。 现在,在“初始状态设置”对话框中选择刚度,为初始状态进行定义。 在该荷载工况中(即考虑的初始状态),考虑在拉杆失效时的刚度。 这样的目的是: 模态分析中考虑该荷载工况的刚度。 因此,您获得了一个非常灵活的系统。
模态分析 | 考虑缺陷
您已经可以在图中看到它: 在定义模态分析荷载工况时,也可以考虑缺陷 可以在模态分析中使用的缺陷类型包括荷载工况中的等效荷载、结构整体初始缺陷表格、静力变形、屈曲模态、动力特征模态和缺陷工况组。
模态分析 | 结构调整
你知道吗? 您可以很容易地在模态分析类型的荷载工况中定义结构调整。 例如,您可以分别调整材料、截面、杆件、面、铰和支座的刚度。 使用这些设计模块可以修改某些设计模块的刚度。 一旦您选择了对象,它们的刚度属性会根据对象类型进行调整。 这样,您可以在不同的选项卡中进行定义。
你想在模态分析中分析对象(例如柱)的失效。 这也是可能的,没有任何问题。 只需切换到结构调整窗口,并停用相关对象,
模态分析 | 计算振型数目的方法
计算模型振型的数量是您的目标吗? 程序提供了两种方法。 一方面,可以手动定义要计算的最小振型的数量。 模态振型的数量取决于自由度,即自由质量点的数量乘以质量作用的方向数量。 但是,它限于 9999。 用户也可以在该选项卡下设置最大自振频率,程序会根据该设置确定振型,
模态分析 | 输出特征值、角频率、固有频率、固有周期、模态质量、有效模态质量、模态质量系数和参与系数
计算是否完成? 在对话框中可以以图形和表格的形式显示模态分析的结果。 打开模态分析的一个或多个荷载工况的结果表格。 用户可以通过该对话框查看结构的特征振型和自振周期。 此外,还可以清楚地显示有效振型质量、振型质量系数和参与系数。
模态分析 | 计算节点或有限元网格点中的质量
您是否已经发现了网格点质量方面的表格输出和图形输出? 是的,这也是 RFEM 6 中模态分析的结果之一。 用户可以在该对话框中检查导入的质量。 可以在“结果”表的“网格点中的质量”选项卡中显示它们。 在表格中显示了以下结果的概览: 质量- 平动方向(mX 、mY 、mZ )、质量-转动方向(mφX 、mφY 、mφZ )和质量总和。 尽快进行图形评估对您来说更好吗? 并且可以图形方式显示网格点上的质量。
模态分析 | 振型的可视化和标准化
在完成模态分析荷载工况的计算后,在程序中会显示其结果。 用户可以立即以图形或动画方式查看第一振型。 并轻松将振型调整为标准化表示。 用户可以直接在结果导航器中进行相关操作,可以通过以下四个选项来显示振型:
- 将振型向量 uj 值调至 1(只考虑平移分量)
- 选择特征向量的最大平移分量并将其设为 1
- 考虑整个特征向量(包括转动分量),选择最大值并设为 1
- 将每个振型的模态质量 mi 设为 1 kg
有关振型标准化的详细说明,请访问: 在线手册 .
计算价格
该价格适用于United States。