Valeur de calcul de la contrainte de cisaillement selon. DIN EN 1992-1-1, 6.2.5 (1)

L'objectif de cet article technique est de réaliser une vérification selon la méthode de calcul générale de l'Eurocode 2 à l'aide d'un exemple de poteau en béton armé.




Le facteur de pertinence modale (MRF) peut vous aider à évaluer à quel point des éléments contribuent à un mode propre spécifique. Le calcul est basé sur l'énergie de déformation élastique relative de chaque composant structural.
Le MRF permet de distinguer les modes propres locaux et globaux. Si plusieurs barres ont un MRF important (par exemple supérieur à 20 %), une instabilité de la structure entière ou d'une partie de celle-ci est très probable. Néanmoins, si la somme de tous les MRF est d'environ 100 % pour un mode propre, un problème de stabilité locale (par exemple le flambement d'une barre simple) est à prévoir.
De plus, le MRF peut être utilisée pour déterminer les charges critiques et les longueurs efficaces équivalentes des composants structuraux spécifiques (pour l'analyse de stabilité par exemple). Dans ce contexte, les modes propres pour lesquels une barre particulière a des valeurs de MRF faibles (par exemple, < 20 %) peuvent être négligés.
Le MRF est affiché par mode propre dans le tableau de résultats sous Analyse de stabilité --> Résultats par barre --> Longueurs efficaces et charges critiques.

Différents paramètres de vérification des sections peuvent être ajustés dans la configuration pour l'état limite de service. La condition de section appliquée pour l'analyse des déformations et de l'ouverture des fissures peut y être contrôlée.
Les paramètres suivants peuvent être activés :
- État fissuré calculé d'après la charge associée
- État fissuré déterminé sous forme d'enveloppe à partir de toutes les situations de projet à l'ELS
- État de fissuration indépendant de la charge

Dans l'onglet « Flèche et appuis de calcul » sous « Modifier la barre », les barres peuvent être clairement segmentées à l'aide de fenêtres d'entrée optimisées. Selon les appuis, les limites de déformation pour les poutres en porte-à-faux et à travée simple sont utilisées automatiquement.
En définissant l'appui de calcul dans la direction correspondante au début et à la fin de la barre et aux nœuds intermédiaires, le programme reconnaît automatiquement les segments et les longueurs de segment auxquels la déformation admissible est liée. Il reconnaît également automatiquement s'il s'agit d'une poutre ou d'un porte-à-faux à l'aide des appuis de calcul définis. L'attribution manuelle, comme dans les versions précédentes (RFEM 5), n'est plus nécessaire.
L'option « Longueurs définies par l'utilisateur » permet de modifier les longueurs de référence dans le tableau. La longueur de segment correspondante est toujours utilisée par défaut. Si la longueur de référence diffère de la longueur du segment (par exemple, dans le cas de barres courbes), elle peut être ajustée.

Cette fonctionnalité contribue également à un affichage clair de vos résultats. Les plans de coupe sont des plans sécants que vous pouvez placer librement dans le modèle. Ainsi, la zone devant ou derrière le plan est masquée dans l'affichage. Vous pouvez ainsi afficher clairement et simplement les résultats à une intersection ou dans un solide, par exemple.
Pourquoi la profondeur efficace est-elle différente de celle utilisée dans les vérifications en cisaillement ?
Les sections paramétriques peuvent-elles être optimisées ?
Comment comprendre la détermination des armatures requises ?
Les panneaux de cisaillement et les appuis en rotation peuvent-ils être considérés dans le calcul global ?
Comment créer un couplage de nœuds du type « Diaphragme » dans RFEM 6 après la suppression de la fonction « 1.31 – Couplages de nœuds » dans RFEM 5 ?
Une jonction plancher-mur en CLT nécessite-t-elle une articulation linéique ou une libération linéique dans le module complémentaire Module de bâtiment ?