29373x
003045
2022-01-26

Потеря устойчивости

Моя модель нестабильна. В чем может быть причина?


Ответ:

Прерывание расчёта из-за нестабильности системы может иметь различные причины. С одной стороны, это может свидетельствовать о «настоящей» нестабильности из-за перегрузки конструктивной системы; с другой стороны, неточности моделирования также могут быть причиной этого сообщения об ошибке. Ниже показано, как можно установить причины нестабильности.

1. Проверка моделирования

Сначала необходимо проверить, правильна ли конструктивная система с точки зрения моделирования. Hierfür bietet es sich an, die von RFEM/RSTAB zur Verfügung gestellten Modellkontrollen (Extras → Modellkontrolle) zu verwenden. Например, эти параметры позволяют находить идентичные узлы и перекрывающиеся стержни, чтобы при необходимости их можно было удалить.

Кроме того, можно рассчитать конструкцию, подверженную чистой постоянной нагрузке в загружении, например, по линейному статическому расчёту. Если изображаются результаты, то данная конструкция в отношении моделирования стабильна. Sollte dies nicht der Fall sein, sind im Folgenden die häufigsten Ursachen aufgelistet (siehe auch Video "Modellkontrolle" im Bereich "Downloads):

Falsche Definition von Auflagern / Fehlen von Auflagern

Это может привести к нестабильности, так как конструкция имеет опоры не во всех направлениях. Поэтому условия опирания должны быть в равновесии с конструктивной системой, а также с внешними граничными условиями. Статически недоопределенные системы также могут привести к прерыванию расчёта из-за отсутствия граничных условий.

Torsion von Stäben um die eigene Achse

Если стержни поворачиваются вокруг своих осей, то есть стержень не ограничен вокруг своей оси, это может привести к нестабильности. Часто на это влияют настройки шарниров стержней. Может случиться, что шарниры от кручения заданы как в начальном узле, так и в конечном узле. Ein Hinweisfenster beim Start der Berechnungen macht den Nutzer dabei allerdings aufmerksam.

Fehlende Verbindung von Stäben

Особенно в случае с более крупными и сложными моделями может случиться так, что некоторые элементы не будут связаны друг с другом, а будут как бы «парить в воздухе». Кроме того, если вы забудете о перекрещивании стержней, которые должны пересекаться друг с другом, это также может привести к нестабильности. Решение обеспечивает проверка модели «Пересечение несвязанных элементов», которая ищет элементы, пересекающиеся друг с другом, но не имеющие общего узла в точке пересечения.

Kein gemeinsamer Knoten

Узлы вроде бы находятся в одном месте, но при более внимательном рассмотрении они немного отклоняются друг от друга. Это часто вызвано импортом из CAD, и вы можете исправить это с помощью проверки модели.

Entstehen einer Gelenkkette

Когда слишком много шарниров на концах стержня, на узле это может вызвать шарнирную цепь, которая приведет к прерыванию расчёта. Для каждого узла можно задать только n-1 шарниров с одинаковой степенью свободы относительно общей системы координат, где «n» - это количество соединяемых стержней. То же относится и к высвобождениям линий.

2. Проверка жёсткости

Если жёсткость отсутствует, это также может привести к прерыванию расчёта из-за нестабильности. Поэтому всегда следует проверять, достаточно ли жёсткости конструкция во всех направлениях.

3. Цифровые проблемы

Zu diesem Punkt wird in Bild 08 ein Beispiel aufgezeigt. Это шарнирная рама, усиленная растянутыми стпржнями. Из-за сжатия колонны за счёт вертикальных нагрузок, на растянутые стержни на первом этапе расчёта действуют небольшие сжимающие усилия. Они удаляются из конструкции (поскольку могжет поглощаться только растяжение). На втором этапе расчёта модель будет неустойчивой без этих растянутых стержней. Есть несколько способов решить эту проблему. Sie können den Zugstäben eine Vorspannung (Stablast) erteilen, um die kleinen Druckkräfte zu „eliminieren“, den Stäben eine kleine Steifigkeit zuweisen oder die Stäbe nacheinander in der Berechnung entfernen lassen (siehe Bild 08).

4. Выявление причин потери устойчивости

Automatische Modellkontrolle mit grafischer Ausgabe

Um eine grafische Darstellung der Ursache einer Instabilität zu erhalten, kann das Modul RF-STABIL (für RFEM 5) bzw. das Add-On Strukturstabilität (für RFEM 6) weiterhelfen. Mit der Option "Eigenform des instabilen Modells ermitteln" (siehe Bild 09) bzw. "Berechnen ohne Belastung für Instabilitätsnachweis durch Eigenform" lassen sich vermeintlich instabile Systeme berechnen. Анализ собственных чисел выполняется на основе конструктивных данных, поэтому в результататах нестабильность затронутого конструктивного элемента отображается графически.

Verzweigungsproblem

Если загружения или сочетания нагрузок рассчитываются в соответствии с геометрически линейным анализом и расчёт прерывается только при анализе второго порядка, возникает проблема устойчивости (критический коэффициент нагрузки менее 1,00). Коэффициент критической нагрузки указывает на коэффициент, на который необходимо умножить нагрузку, чтобы модель стала неустойчивой (например, потеря устойчивости) под действием соответствующей нагрузки. Следовательно: Коэффициент критической нагрузки менее 1,00 означает, что конструкция нестабильна. Только положительный коэффициент критической нагрузки, превышающий 1,00, означает, что нагрузка от заданных осевых сил, умноженная на этот коэффициент, приводит к разрушению конструкции при потере устойчивости. Um die "Schwachstelle" ausfindig machen zu können, empfiehlt sich folgende Vorgehensweise, welche das Modul RSKNICK (RSTAB 8) oder RF-STABIL (RFEM 5) bzw. das Add-On Strukturstabilität (RFEM 6 / RSTAB 9) voraussetzt (siehe auch Video "Verzweigungsproblem" im Bereich "Downloads).

Во-первых, необходимо уменьшить нагрузку затронутого сочетания нагрузок до тех пор, пока это сочетание нагрузок не станет стабильным. Может помочь коэффициент нагрузки в расчётных параметрах сочетания нагрузок. Dies entspricht auch einer manuellen Ermittlung des Verzweigungslastfaktors, falls die oben genannten Module bzw. Add-Ons nicht zur Verfügung stehen. Bei rein linearen Strukturelementen kann es bereits ausreichen, die Lastkombination nach Theorie I. Ordnung zu berechnen und diese im Zusatzmodul direkt zu berechnen bzw. die Verzweigungslast mit dem Add-On ermitteln zu lassen. Anhand der grafischen Knick- oder Beulfigur dieser Lastkombination können Sie möglicherweise die "Schwachstelle" im System ausfindig ausmachen und Abhilfemaßnahmen ergreifen. Damit neben den globalen Eigenformen auch die lokalen Versagensformen der Stäbe erfasst werden, sollten Sie im Modul RF-STABIL (RFEM 5) die Stabteilung aktivieren bzw. im Modul RSKNICK (RSTAB 8) die Teilung für Fachwerkstäbe auf mindestens "2" setzen. Für das Add-On Strukturstabilität (RFEM 6 / RSTAB 9) sollten Sie überprüfen, ob die Stabteilungen für Stäbe aktiviert sind.

Siehe Links unter diesen FAQ.



Автор

Г-н Длубал отвечает за операционную активность компании, а также за немецкие ресурсы. Помимо того, он занимается также маркетингом и продажами.

Ссылки
Скачивания


;