3x
000217
2023-08-29

VE0217 | Flexão com imperfeição e empenamento

Descrição

A structure consists of I-profile simply supported beam. The axial rotation φx is restricted on the both ends but the cross-section is free to warp (fork support). The beam has an initial imperfection in Y-direction defined as a parabolic curve with maximum displacement 30 mm in the middle. Uniform loading is applied in the middle of the top flange of I-profile. O problema é descrito pelo seguinte conjunto de parâmetros. The verification example is based on the example introduced by Gensichen and Lumpe see the reference.

Material Steel S235 Módulo E E 210000.000 MPa
módulo de corte G 81000.000 MPa
Geometry Structure perímetro L 6.000 m
Imperfection Maximum Imperfection imax 30.000 mm
I-profile Altura h 400.000 mm
Largura b 180.000 mm
Espessura de alma s 10.000 mm
Espessura de banzo t1 14.000 mm
Load Continuous Load q 30.000 kN/m
Excentricidade ez -200.000 mm

Analytical Solution

Analytical solution is not available. Results from software S3D are taken as reference.

RFEM and RSTAB Settings

  • Modeled in RFEM 6.06 and RSTAB 9.06
  • The element size is lFE= 0.010 m
  • Isotropic linear elastic material model is used
  • The number of increments is 10
  • Second-Order and Large Deformation Analysis are used
  • Torsional Warping (7DOF) Add-on is used
  • The problem is modeled both by members and a combination of members and surface elements
  • Stiffness is reduced by means of Partial Safety Factor γM=1.1

Resultados

Two modeling techniques are used in RFEM 6. At first, the I-section is modeled as a beam with given imperfection (parabolic shape). Next, the I-profile is modeled by means of surface elements (plates). In this case the boundary conditions are modeled as close as possible to the beam case, but the results can be influenced by the differencies in the modeling style. In RSTAB 9 the imperfection is modeled by means of the set of short beams with given imperfection in nodes.

RSTAB 9 results:

Quantity S3D RSTAB 9 - Second-Order Analysys Relação RSTAB 9 - Large Deformation Analysys Relação
uy(x=3 m) [mm] 24.2 31.041 1.283 30.182 1.247
uz(x=3 m) [mm] 18.8 16.772 0.892 22.644 1.204
φx(x=3 m) [mrad] 152 186.528 1.227 194.596 1.280
My(x=3 m) [kNm] 134 134.738 1.006 135.550 1.012
Mz(x=3 m) [kNm] -20.5 -24.875 1.213 -26.716 1.303
Mω(x=3 m) [kNm2] 4.02 5.053 1.257 5.276 1.312
MTpri(x=0 m) [kNm] 2.91 3.165 1.088 3.301 1.134
MTsec(x=3 m) [kNm] 1.78 2.307 1.296 2.410 1.354

RFEM 6 results:

Quantity S3D RFEM 6 - Second-Order Analysys Relação RFEM 6 - Large Deformation Analysys Relação RFEM 6 - Plates - Large Deformation Analysys Relação
uy(x=3 m) [mm] 24.2 14.476 0.598 26.962 1.114 26.339 1.088
uz(x=3 m) [mm] 18.8 14.022 0.746 20.213 1.075 20.159 1.072
φx(x=3 m) [mrad] 152 86.937 0.572 175.234 1.153 172.512 1.135
My(x=3 m) [kNm] 134 133.477 0.996 132.992 0.992 - -
Mz(x=3 m) [kNm] -20.5 -17.476 0.852 -23.546 1.149 - -
Mω(x=3 m) [kNm2] 4.02 2.335 0.581 4.716 1.173 - -
MTpri(x=0 m) [kNm] 2.91 1.490 0.512 3.002 1.032 - -
MTsec(x=3 m) [kNm] 1.78 1.160 0.652 2.300 1.292 - -


Referências
  1. LUMPE, G. e GENSITEN, V. Avaliação de teoria e software de análises de barras lineares e não lineares: Exemplos de teste, causas de rotura, teoria detalhada. Anestési.
  2. LUMPE, G. S3D (vers. 25/09/2011). Universidade de Ciências Aplicadas de Biberach, 2011.