Descrizione
Un recipiente con pareti spesse è caricato dalla pressione interna ed esterna. The vessel is open-ended, thus there is no axial stress. The problem is modeled as a quarter model. Determine the radial deflection of the inner and outer radius ur(r1), ur(r2). Il peso proprio è trascurato.
Material | Elastic | Modulo di elasticità | E | 1.000 | MPa |
Poisson´s Ratio | ν | 0.250 | - | ||
Geometry | Inner Radius | r1 | 200.000 | mm | |
Outer Radius | r2 | 300.000 | mm | ||
Load | Inner Pressure | p1 | 60.000 | kPa | |
Outer Pressure | p2 | 10.000 | kPa |
Soluzione analitica
The stress state of the thick-walled vessel is described by the equation of equilibrium
σr
|
Tensione radiale |
σt
|
Tensione tangenziale |
Using strain-deflection equations and Hooke´s Law, second-order differential equation is obtained
The solution leads to the radial stress σr and tangential stress σt.
K, C | Costanti reali |
Constants K and C are obtained using boundary conditions.
The radial deflection of the inner and outer radius of the open-ended vessel ur(r1), ur(r2) can be determined using the following equations:
RFEM Settings
- Modeled in RFEM 5.06 and RFEM 6.06
- The element size is lFE = 2.000 mm
- Isotropic linear elastic material model is used
Risultati
Quantity | Soluzione analitica | RFEM 6 | Rapporto | RFEM 5 | Rapporto |
ur(r1) [mm] | 27.000 | 26.998 | 1.000 | 27.000 | 1.000 |
ur(r2) [mm] | 21.750 | 21.747 | 1.000 | 21.750 | 1.000 |