“特征值法和增量法”稳定性分析模块
总数: 4
结构稳定性 | 产品特性
- 计算由杆件、壳和实体单元组成的模型
- 非线性稳定性分析
- 选择考虑初始预应力引起的轴力
- 四种方程求解器高效的计算不同的模型
- 在 RFEM/RSTAB 中考虑刚度调整
- 按照用户定义的荷载增量系数(Shift-Methode)计算稳定性图形
- 选择计算非稳定模型的振型(用于找出不稳定的原因)
- 显示稳定性图形
- 缺陷的确定基础
结构稳定性 | 输入
如果程序中存在荷载工况或荷载组合,则程序会激活稳定性计算, 对于初始预应力,您可以定义另一个荷载工况。
那么用户需要指定是进行线性还是非线性分析。 根据不同的应用情况,可以选择一种直接的计算方法,例如 Lanczos 方法或 ICG 迭代法。 不集成在面上的杆件通常显示为带有两个有限元节点的杆件单元。 这样的单元不能计算单个杆件的局部屈曲。 这就是'这就是为什么您可以选择自动划分杆件的原因。
结构稳定性 | 计算
特征值分析有以下几种方法:
- 直接法
- 直接法(Lanczos 迭代法 [RFEM]、特征多项式的根 [RFEM]、子空间迭代法 [RFEM/RSTAB]、转换反幂法 [RSTAB])适用于中小型模型。 只有在您的计算机有大量内存的情况下才可以使用这些快速的求解方法。
- ICG 迭代方法(不完全共轭梯度)
- 这种方法占用内存很小。 一个接一个地计算特征值。 可用于计算具有很少特征值的大型结构体系。
使用“结构稳定性”模块,可以使用增量法进行非线性稳定性分析。 并且对非线性结构也给出了接近真实的计算结果。 临界荷载工况的临界荷载系数是通过逐渐增加荷载工况的荷载直到达到不稳定状态来确定的。 荷载增量考虑了材料的非线性,例如失效的杆件,支座和地基的非线性。 在附加荷载作用下可以对最后一个稳定状态进行线性稳定性分析,以确定最佳的稳定性模态。
结构稳定性 | 结果
首先程序显示临界荷载系数。 然后用户可以对稳定性进行评估。 对于包含杆件的模型,在表格中会显示杆件的有效长度和临界荷载。
用户可以使用其他结果窗口按节点、杆件和面检查振型。 用户可以通过特征值的图形来评估屈曲行为, 以便轻松找到解决方案。
计算价格
总金额 1,300.00 USD
该价格适用于United States。