在 2023 年 5 月 10 日的网络课堂“Rhino/Grasshopper 与 RFEM 6 之间的数据交换”中使用了该模型。
全部
本页有0条用户评论。
5 星 | ||
4 星 | ||
3 星 | ||
2 星 | ||
1 星 |
钢结构
节点数目: | 256 |
线的数目 | 709 |
杆件数目: | 709 |
面的数目: | 0 |
实体数目 | 0 |
荷载工况数目 | 0 |
荷载组合数目 | 0 |
结果组合数目 | 0 |
总重量 | 22,961 t |
翘曲区域尺寸 | 20.000 x 13.333 x 20.000 m |
您可以下载该结构分析模型来进行专业练习,或者用于您的工程项目。 但是我们不保证模型的准确性或完整性,也不承担任何责任。
为了评估在动力计算中是否也必须考虑二阶效应分析,在 EN 1998-1 中第 2.2.2 和 4.4.2.2 节中规定了层间位移的灵敏度系数 θ。 可以使用RFEM 6和RSTAB 9进行计算。
本文介绍了在“模态分析”模块中确定振型数量的不同方法。
评估建筑物楼层位移对于通过限制位移量确保满意的结构性能至关重要。 位移过大可能会引起结构失稳,并可能对非结构构件(例如墙)造成损坏。 本文概述了根据 ASCE 7-22 和 RFEM 6 中的建筑模型模块设置层间位移的步骤。
规范 [1] 中的 ASCE 7-22 部分。 12.9.1.6 规定了在进行抗震设计的模态反应谱分析时应考虑 P-delta 效应的情况。 在 NBC 2020 [2] 的 Sent. 4.1.8.3.8.c 仅给出了一个简短的要求,即考虑重力荷载与变形结构的相互作用引起的侧移效应。 在某些情况下,进行地震分析时必须考虑二阶效应,也称为 P-delta。
通常在时程分析中考虑初始状态。
- 可以设计五种抗震结构体系 (SFRS),即特殊弯矩坐标系(SMF)、中间弯矩坐标系(IMF)、普通弯矩坐标系(OMF)、普通弯矩坐标系(OCBF)和特殊弯矩坐标系(SCBF) )
- 腹板和翼缘宽厚比的延性验算
- 计算梁的稳定性支撑所需的强度和刚度
- 计算梁的稳定性支撑的最大间距
- 计算梁在铰处所需的支撑强度
- 计算柱子所需强度,可以选择忽略所有弯矩、剪力和扭矩以达到超强极限状态
- 计算柱和支撑的长细比
抗震验算的结果分为两部分: 杆件要求和连接要求。
在“抗震要求”中规定了抗弯和抗剪强度。 它们在'弯矩框架连接(按杆件)'选项卡中列出。 对于有支撑的框架,在“支撑连接”选项卡中列出了连接所需的抗拉强度和连接抗压强度。
用户可以在表格中查看计算过程。 在设计验算详细信息中可以清楚地显示公式和规范引用。
在杆件类型“阻尼器”中可以定义阻尼系数,弹簧常数和质量。 这种类型的杆件扩展了时程分析的可能性。
关于粘弹性,杆件类型“阻尼器”类似于 Kelvin-Foigt 模型,由阻尼元件和弹性弹簧(两者并联)组成。
为您推荐产品