Vérification du béton armé selon la méthode du poteau type (ou la méthode basée sur la courbure nominale)
RF-/CONCRETE Columns | Fonctionnalités
- Intégration complète dans RFEM/RSTAB avec importation de données de géométrie et de cas de charge
- Sélection automatique des barres à calculer selon les critères définis (par exemple les barres verticales uniquement)
- Avec l'extension {%/fr/produits/rfem-et-rstab-modules-additionnels/structures-en-beton/ec2 EC2 pour RFEM/RSTAB]], vous pouvez effectuer les calcul des éléments comprimés en béton armé selon la méthode basée sur la courbure nominale en conformité avec l'EN 1992 -1-1:2004 (Eurocode 2) et les Annexes Nationales suivantes :
-
DIN EN 1992-1-1/NA/A1:2015-12 (Allemagne)
-
ÖNORM B 1992-1-1:2018-01 (Autriche)
-
NBN EN 1992-1-1 ANB:2010 pour les essais à température normale et EN 1992-1-2 ANB:2010 pour la vérification de la résistance au feu (Belgique)
-
BDS EN 1992-1-1:2005/NA:2011 (Bulgarie)
-
EN 1992-1-1 DK NA: 2013 (Danemark)
-
NF EN 1992-1-1/NA: 2016-03 (France)
-
SFS EN 1992-1-1/NA: 2007-10 (Finlande)
-
UNI EN 1992-1-1/NA:2007-07 (Italie)
-
LVS EN 1992-1-1:2005/NA:2014 (Lettonie)
-
LST EN 1992-1-1:2005/NA:2011 (Lituanie)
-
MS EN 1992-1-1:2010 (Malaisie)
-
NEN-EN 1992-1-1+C2:2011/NB:2016 (Pays-Bas)
-
NS EN 1992-1 -1:2004-NA:2008 (Norvège)
-
PN EN 1992-1-1/NA:2010 (Pologne)
-
NP EN 1992-1-1/NA:2010-02 (Portugal)
-
SR EN 1992-1-1:2004/NA:2008 (Roumanie)
-
SS EN 1992-1-1/NA:2008 (Suède)
-
SS EN 1992-1-1/NA:2008-06 (Singapour)
-
STN EN 1992-1-1/NA:2008-06 (Slovaquie)
-
SIST EN 1992-1-1:2005/A101:2006 (Slovénie)
-
UNE EN 1992-1-1/NA:2013 (Espagne)
-
CSN EN 1992-1-1/NA:2016-05 (République tchèque)
-
BS EN 1992-1-1:2004/NA:2005 (Royaume-Uni)
-
TKP EN 1992-1-1:2009 (Biélorussie)
-
CYS EN 1992-1-1:2004/NA:2009 (Chypre)
-
- Outre ces Annexes Nationales, l'utilisateur peut également en définir une avec des valeurs limites et des paramètres personnalisés.
- Considération facultative du fluage
- Détermination des longueurs de flambement et des élancements à partir des rapports de maintien des poteaux
- Détermination automatique des excentrements ordinaires et non-voulus à partir d'excentrements additionnels disponibles selon l'analyse du second ordre
- Calcul de structures monolithiques et d'éléments préfabriqués
- Analyse par rapport au calcul de béton armé
- Détermination des efforts internes selon la théorie du premier ordre et la théorie du second ordre
- Analyse des emplacements de calcul déterminants le long du poteau en raison des charges existantes
- Sortie des armatures longitudinales et des armatures de cadre
- Vérification de la résistance au feu selon la méthode simplifiée (méthode par zone) selon l'EN 1992-1-2 permettant la vérification de la résistance au feu des supports.
- Vérification de la résistance au feu avec calcul d'armatures longitudinales optionnelle selon le DIN 4102-22:2004 ou la DIN 4102-4:2004, Tableau 31
- proposition d'armatures longitudinales et des armatures de liaison avec affichage graphique en rendu 3D
- Résumé des rapports de calcul comprenant tous les détails de calcul
- Représentation graphique des détails de vérification pertinents dans la fenêtre de travail de RFEM/RSTAB
RF-/CONCRETE Columns | Entrée
Par exemple, les barres à calculer sont directement importées depuis RFEM/RSTAB. Les cas de charge, les combinaisons de charges et de résultats sont assignés, ce qui entraîne les efforts internes linéaires-élastiques sur les barres sélectionnées. Lorsque l'on considère le fluage, la charge causant le fluage doit également être définie. Les matériaux de RFEM/RSTAB sont prédéfinis, mais ils peuvent être ajustés dans RF-/CONCRETE Columns. Les propriétés de matériau prescrites respectivement par norme sont stockées dans la bibliothèque de matériaux.
Vous pouvez définir facilement les propriétés de construction des poteaux ainsi que d'autres détails propres à la détermination des armatures longitudinales et d'effort tranchant requises. Le facteur de longueur efficace ß doit être défini manuellement, déterminé automatiquement par le module ou importé depuis le module additionnel RF-STABILITY/RSBUCK.
La vérification de la résistance au feu selon l'EN 1992-1-2 nécessite des spécifications différentes : par exemple, détermination des côtés de section où la carbonisation se produit.
RF-/CONCRETE Columns | Vérification
Pour la vérification de la rupture en flexion, les positions déterminantes du poteau sont analysées pour la force axiale et les moments. De plus, la vérification de la résistance au cisaillement considère la localisation des efforts tranchants avec des valeurs extrêmes. Lors du calcul, le logiciel détermine si un calcul standard est suffisant ou si le poteau avec les moments doit être calculé selon la théorie du second ordre. Ces moments sont ensuite déterminés en fonction des spécifications entrées au préalable. Le calcul est subdivisé en quatre parties :
- Étapes de calcul indépendantes de la charge
- Détermination itérative de la charge déterminante en considérant une armature requise qui varie.
- Détermination des armatures prévues pour les efforts internes déterminants
- Détermination de la sécurité pour tous les efforts internes agissants en considérant l'armature prévue
De cette façon, le RF-/CONCRETE Columns livre une solution complète avec une proposition d'armatures optimisée et les charges résultantes.
RF-/CONCRETE Columns | résultats
Suite à la vérification, les résultats de calcul s'affichent dans des tableaux clairement organisés. Chaque valeur intermédiaire est répertoriée, ce qui rend les vérifications de calcul explicites.
La proposition d'armatures est conçue pour les armatures longitudinales et transversales en considérant les toutes les prescriptions et recommandations de construction. Les armatures sont affichées en 3D. La proposition d'armatures peut être modifiée en fonction de vos souhaits. Un graphique 3D présente la répartition exacte de la déformation et de la contrainte sur la section.
Si l'une des vérifications de la résistance au feu n'est pas satisfaisante, les armatures requises sont augmentées jusqu'à ce que toutes les vérifications soient effectuées avec succès ou jusqu'à ce qu'aucune disposition d'armatures ne puisse plus être trouvée. les poteaux et leur armature peuvent être affichés dans le rendu 3D et dans la fenêtre de travail de RFEM/RSTAB. En plus des données d'entrée et des résultats, y compris les détails de vérification affichés dans les tableaux, vous pouvez intégrer tous les éléments graphiques dans le rapport d'impression. De cette manière, une documentation compréhensible et clairement présentée est garantie.
Boutique en ligne
Sélectionnez des programmes et obtenez les tarifs immédiatement !
Calculez votre prix

Le prix est valable pour la États-Unis.
Normes implémentées pour la vérification du béton armé
Normes pour la vérification du béton
Annexes pour l'EN 1992-1-1





Le calcul global assigne la rigidité déterminée à l'aide de la composition sélectionnée et de la géométrie du verre à chaque surface. Le calcul est ensuite effectué selon la théorie des plaques. Il est possible de sélectionner si le couple de cisaillement des couches doit être considéré.
Dans le cas d'un calcul local, vous pouvez spécifier le calcul 2D ou 3D en outre. Par calcul bidimensionnel, le verre à une couche ou feuilleté est modélisé comme une surface dont l'épaisseur est calculée à partir de la structure et de la géométrie sélectionnées (théorie des plaques). De même pour le calcul global, vous pouvez également considérer le couplage de cisaillement des couches.
Le calcul 3D utilise des solides du modèle pour remplacer chaque couche de composition. Les résultats sont ainsi plus précis, mais le calcul peut prendre plus de temps.
Le verre isolant peut être modélisé si le calcul local n'est pas sélectionné. La couche de gaz est toujours modélisée sous forme d'élément solide, il est donc nécessaire de calculer des parties en verre isolant indépendamment de la structure environnante. La loi des gaz parfaits (équation thermique de l'état des gaz parfaits) est considérée pour le calcul et l'analyse du troisième ordre.

Dans le module additionnel, sélectionnez les surfaces à calculer (par exemple à l'aide de la fonction Sélectionner). La géométrie de la vitre, ainsi que les charges, sont importées à partir du modèle RFEM.
Vous devez décider si le calcul doit être effectué sans l'influence de la structure environnante (calcul local) ou avec cette influence (calcul global). Si vous sélectionnez le calcul local, chaque surface sélectionnée pour la vérification est détachée du modèle et calculée séparément.
Le calcul global considère la structure entière, y compris les vitres entrées. Toutes les données de la composition en verre et les propriétés en verre des couches individuelles doivent être définies dans les fenêtres d'entrée de RF-GLASS. Vous pouvez sélectionner des couches de type verre, feuille et gaz. Le matériau souhaité peut être importé directement à partir de la bibliothèque, qui contient un grand nombre de matériaux.
Tous les paramètres des couches individuelles, y compris leurs épaisseurs, peuvent être modifiés. De plus, vous pouvez créer un certain nombre de compositions dans RF-GLASS, vous permettant ainsi de calculer différents types de vitrage ensemble.
Pour le verre isolant, vous pouvez considérer les charges externes ainsi que les charges dues aux changements de température, de pression atmosphérique et d'altitude pour l'analyse. Le module calcule ces charges automatiquement sur la base des paramètres de charge climatique. Si vous sélectionnez le type de calcul local, des appuis linéiques, des appuis nodaux et des barres de contour des surfaces doivent être définis dans RF-GLASS. Ces appuis et barres sont considérés uniquement dans RF-GLASS et n'ont aucune influence sur le modèle créé dans RFEM.

Une fois le calcul terminé, les résultats sont affichés dans des tableaux de résultats clairement organisés. Ainsi, vous pouvez facilement trouver le rapport de contrainte maximal. Le diagramme des contraintes par composition est également affiché.
De plus, RF-GLASS affiche une liste de pièces et, pour le verre isolant, la pression du gaz. Il est possible d'afficher les résultats graphiquement dans le modèle RFEM.
Les tableaux d'entrée et de résultats de RF-GLASS, y compris les graphiques, peuvent être ajoutés au rapport d'impression de RFEM. De plus, il est possible d'exporter tous les tableaux vers MS Excel.

- Vérification du verre à une couche ou feuilleté, ainsi que du verre isolant à couche gazeuse
- calcul d'éléments courbes en verre
- Possibilité de sélectionner le calcul local sans considérer l'influence d'une structure environnante ou le calcul global en considérant l'influence d'une structure entière
- Calcul des contraintes limites selon la DIN 18008:2010-12 ou TRLV:2006-08
- Attribution des charges aux classes de durée de charge
- Vaste bibliothèque de matériaux contenant tous les types courants de verre, de feuille et de gaz conformément aux normes DIN 18008:2010-12, E DIN EN 13474 et la norme TRLV:2006-08
- Considération facultative du couple de cisaillement des couches
- Considération des charges climatiques
- Calcul selon l’analyse statique linéaire ou analyse non linéaire selon l’analyse des grandes déformations. analyse
- Analyse des contraintes, vérification à l'état limite ultime, vérification à l'état limite de service
- Représentation graphique de tous les résultats dans RFEM
- Possibilité de filtrer les résultats et les échelles de couleur dans les tableaux de résultats
- Export direct des données dans MS Excel