Los requisitos de la barra se tratan en un artículo separado, Kb | AISC 341-16 Cálculo de barras de pórticos resistentes a momentos en RFEM 6 .
More in-depth details on the Seismic Configuration input are covered in article Kb | Cálculo sísmico AISC 341 en RFEM 6 .
Connection Requirements
The "Seismic Requirements" include the Required Flexural Strength and the Required Shear Strength of the beam-to-column connection. They are listed in the Moment Frame Connection by Member tab. The design check details are not available for the connection strength. However, the equations and standard references are listed. The symbols and definitions are summarized in the table below (Image 1).
AISC Seismic Design Manual – Example 4.3.7 SMF Bolted Flange Plate (BFP) Connection Design
For simplicity, the RFEM model consists only of a single frame instead of the entire building that is presented in the AISC example (Image 2). The gravity load on the beam = 1.15 kip/ft.
The numbering of the steps in this example follows the step-by-step design procedure outlined in AISC 358-16 Section 7.6 [3].
Step 1. Compute probable maximum moment at the plastic hinge location, Mpr
yM5 | Coeficiente parcial de seguridad |
Mop, i, Rd | Valor de cálculo del momento resistente de la conexión para flexión fuera del plano del sistema estructural para el componente estructural i |
ν | Viscosidad cinemática |
D | Constante |
ωD | frecuencia angular |
Steps 2 to 5 contain the bolt requirements and are outside the scope of the Steel Design add-on.
Step 6. Compute shear forces at the beam plastic hinge location, Vpr + Vg
Vpr |
Cortante necesario para producir el momento máximo probable en la articulación plástica Vpr = 2Mpr/Lh
|
Vg |
Cortante por cargas de gravedad en la ubicación de la bisagra de plástico Vg = wu Lh/2
|
Mpr | Momento máximo probable en la ubicación de la bisagra de plástico |
p10 | Presión máxima de explosión remota (Kinney y Graham) [kPa] |
Z | Distancia a escala [m/kg 1/3 ] para Z> 2,8 |
Step 7. Determine moment expected at the face of the column flange, Mf
α | coeficiente de forma |
td | Duración de la acción de presión positiva |
cr- | Factor de reflexión de baja presión |
t ~d | Duración virtual de la acción de presión positiva |
B | Área integrada |
The above equation neglects the gravity load on the small portion of the beam between the plastic hinge and the face of the column (1.15 kip/ft*1.875 ft = 2.16 kips*22.5 in = 48.6 k-in). This value is permitted to be included [3].
Step 14. Determine the required shear strength at the face of the column, Vu
The required shear strength at the face of the column is used to design the beam web-to-column (single-plate) shear connection.
pr0 (t) | Modelo de carga para el diagrama presión-tiempo totalmente reflejado |
p4 (t) | Función de carga exponencial (aproximación de Friedlander) |
y | Senkrechter Abstand der z-Achse zum Element dA |
Fy | límite elástico |
MC | Valor absoluto del momento en el punto tres cuartos del segmento sin arriostrar |
To be more precise, the calculation above shows Vg taken at the face of the column instead of at the centerline (as shown in the AISC example [2]). The small difference can be seen in the shear diagrams (Image 3).
The values obtained from the formulas above can be compared to the result produced by RFEM under the “Seismic Requirements” (Image 1). Small discrepancies are due to rounding. The result can also be included in the printout report (Image 4).
The detailed procedures to design bolts, flange plates, single-plate, continuity plates, and doubler plates are not part of the scope. Therefore, the steps for these checks were omitted in this article.
The moment and shear demand based on the worst-case scenario of the overstrength load combinations, ΩoM and ΩoV are also listed. For the design of ordinary moment frames (OMF), the potentially limiting aspects of the connection strength include the overstrength seismic load [AISC Seismic Design Manual Section 4.2(b)].