悬臂在其自由端施加一个弯矩。 忽略梁的自重,采用几何线性分析和大变形分析,计算自由端的最大挠度。验算示例是基于 Gensichen 和 Lumpe 介绍的示例.
本文阐述并解释了索的抗弯刚度对其内力的影响。 本文还介绍了如何减少这种影响的方法。
使用“木结构设计”模块,可以按照 2018 NDS 标准 ASD 方法进行木柱设计。 准确计算木杆件的抗压承载力和调整系数对于安全考虑和设计非常重要。 下面的文章将按照 NDS 2018 标准,使用逐步的解析方程验证“木结构设计”模块计算的最大临界屈曲强度,包括受压调整系数、调整后的抗压设计值和最终设计比率。
Die meisten in RFEM und RSTAB vorhandenen Walzprofile können auch mit eigenen Parametern versehen werden. Dazu wird der zu verändernde Querschnitt in der Bibliothek ausgewählt und im Anschluss auf den Button [Parametrische Eingabe...] geklickt.
在本文中,使用附加模块 RF-/TIMBER AWC 验证了一个 2x4 尺寸的木材在承受双轴受弯和轴压组合作用的充分性。 梁柱属性和荷载基于 AWC 2015/2018 中木结构设计实例 E1.8 计算得出。
RFEM 和 RSTAB 模型可以另存为 3D glTF 模型(*.glb 和 *.glTF 格式)。 然后在谷歌或 Baylon 的 3D 查看器中详细查看。 戴上虚拟现实眼镜(例如 Oculus)可以“漫步”在结构中。
用户可以按照说明书通过 JavaScript 将 3D glTF 模型集成到自己的网站中(例如在德儒巴网站下载结构分析模型): “在网络和 AR 中轻松显示交互式 3D 模型” .
使用视图选项“相机飞行模式”,您可以在 RFEM 和 RSTAB 结构模型中飞行。 使用键盘可以控制飞行的方向和速度。 此外,还可以将在结构模型中的飞行过程保存为视频。
通过与 Revit 的直接接口,您可以根据在 RFEM 或 RSTAB 中所做的更改来更新 Revit 模型。 根据所做的修改,可能必须重新生成 Revit 对象(删除对象然后重新生成)。 重新生成的模型是在 RFEM/RSTAB 的模型基础上进行的
如果你想避免重新生成,请激活'只更新材料、厚度和截面'复选框。 这种情况下只能调整对象的属性。 与此不同的是,材料、面的厚度和截面在这里不予考虑。
在 RF-/CONCRETE Members 中的配筋方案可以导出到 Revit 中。 但目前仅支持矩形截面和圆截面的杆件。
在 Revit 中可以对钢筋进行修改。