3689x
001811
2023-03-09

Рекомендуемый размер аэродинамической трубы, совместимый с Еврокодом (EN 1991-1-4)

Размер вычислительной области (размер аэродинамической трубы) является важным аспектом моделирования ветра, который оказывает значительное влияние на точность, а также на стоимость моделирования CFD.

В последние годы возрос интерес к использованию вычислительной гидродинамики, известной как CFD, для проектирования конструкций, чувствительных к ветру. Это связано с тем, что достижения в области вычислительной техники сделали решение сложных задач потока относительно недорогим. Размер вычислительной области является важным аспектом, который оказывает значительное влияние на точность, а также на стоимость моделирования CFD.

Основные уравнения потока дискретизируются и разрешаются в объемной области за пределами модели здания, которая называется расчетной областью (рисунок 1). The limits of a typical cuboid domain have a total of six boundaries. These borders, with the exception of the domain's bottom, are essentially non-physical; therefore, their effects on the flow area are a source of simulation error (hereby termed domain errors). It is important to set non-physical barriers far enough away from the structure to minimize major effects on the results. Вычислительная стоимость модели может возрасти, если границы расположены слишком далеко. The size of the computational domain must be optimized with both computational cost and solution accuracy in mind [1].

Computational wind engineering (CWE) best practice recommendations [2] [3] acknowledges the significance of a computational domain with an appropriate size for solution accuracy. These recommendations link domain mistakes to problems with wind tunnel testing that are similar, such as blockage effects in domains with limited cross-sectional areas and artificial acceleration of local flow in domains with insufficient space between the domain boundaries and the building model. Hence, the minimum distance between the domain borders and the building model and the maximum blockage ratios, or a combination of the two, is used to specify the size requirements [3].

Here there is an example of the Eurocode cylinder shape [4] in which two different computational domain dimensions are considered. The first case (Image 2) is the default setting of RWIND, which is a less accurate but faster calculation, and the second is the recommended wind tunnel size (Image 3) which is more accurate but also has a more computational cost. For example, for the default wind tunnel size, 23 minutes is needed to complete the CFD simulation, while for the recommended wind tunnel size, 42 minutes is required in order to finish the simulation (~80% increase of the computational cost). Also, it is important to note the simulation was performed by CPU: Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz and 128 GB RAM for 1000 iterations.



The wind pressure coefficient (Cp) diagram (Image 4) shows that the size of the computational domain can play an important role in the level of accuracy of the results, especially for the positive pressure area. The schematic recommended wind tunnel size in aerodynamics is shown in Image 6 [5]. The critical point is to pay attention to the values of the pressure field near the velocity inlet; they should be optimally close to zero (Image 5).



Автор

Г-н Каземян отвечает за разработку и маркетинг продуктов в компании Dlubal Software, в частности за программу RWIND 2.

Ссылки
  1. Абу-Зидан И., Мендис П. и Гунавардена Т. (2021). Оптимизация размера вычислительной области при CFD моделировании высотных зданий Гелион, 7 (4), e06723. https://doi.org/10.1016/j.heliyon.2021.e06723
  2. Franke, J., Helsten, A., Schlunzen, KH, & Carissimo, B: (2011). Руководство COST 732 по CFD моделированию потоков в городской среде: резюме. International журнал Environment and Conpollution, 44 (1–4), 419–427. https://doi.org/10.1504/ijep.2011.038443
  3. Блокен, Б.: (2015). Вычислительная гидродинамика в городской физике: Значение, масштабы, возможности, ограничения и 10 советов для точного и надежного моделирования. Building and Environment , 91 , 219–245. https://doi.org/10.1016/j.buildenv.2015.02.015
  4. Европейский комитет по стандартизации. (2005). EN 1991-1-4. Еврокод 1: Воздействия на конструкции - Часть 1-4: Общие воздействия - воздействия ветра.
  5. Zhang C., Yang S., Шу C., Wang L. и Stathopoulos T. (2020). Коэффициенты давления ветра у зданий с воздушной завесой. Журнал ветровых нагрузок и промышленной аэродинамики https://doi.org/10.1016/j.jweia.2020.104265


;