Данную температуру можно рассчитать, например, с помощью параметрической кривой «температура-время», согласно указаниям из проложения к норме DIN EN 1991-1-2. В следующей статье мы подробно объясним и продемонстрируем применение расчета с помощью параметрической кривой «температура-время».
В случае, если в сценарии пожара используются параметрические действия факторов пожара, необходимо обеспечить также эффект снижения нагрузки на элемент конструкции. На всех стадиях пожара, включая стадию охлаждения, а также до достижения заданного предела огнестойкости, конструктивный элемент не должен выйти из работы. Так называемая параметрическая кривая зависимости «температура - время» затем приводится в норме EN 1991-1-2 в приложении A. Однако, данный сценарий пожара не разрешается применять в Германии, поскольку там является обязательным немецкое национальное приложение к норме EN-1991-1-2, в котором он был заменен расчетом на огнестойкость. С помощью данной кривой можно подробно описать сценарий возможного пожара, т.е. от стадии возгорания, включая развитую стадию пожара, вплоть до стадии затухания.
Отдельные части кривых ограничены точками, которые четко определяют распределение скорости тепловыделения. Однако при установлении значений температуры необходимо различать пожары, определяемые условиями вентиляции, и пожары, определяемые горючей нагрузкой. Кроме того, данная модель естественного пожара имеет ограниченное применение. Ее можно использовать для общей площади до 400 м² и высоты до 6 м. У моделей пожаров, определяемых условиями вентиляции, характеристическое значение максимальной скорости тепловыделения можно рассчитать по следующим уравнениям.
Для расчета температуры в стальном сечении можно применить, например, Microsoft Excel. В разделе Загрузки вы найдете макрос Excel, который служит для расчета температуры. Полученное с помощью расчета значение можно применить непосредственно в дополнительном модуле.
Процесс расчета
Программа сначала на основе исходных значений рассчитает площадь покрытия, коэффициент открытости и отдельные коэффициенты термического проникновения, которые затем усредняются. После этого различается пожар, определяемый условиями вентиляции или определяемый горючей нагрузкой. Программа определяет тип пожара самостоятельно на основе сравнения значений Qmax,v и Qmax,f. На следующем этапе отдельные отрезки времени и соответствующие значения температуры рассчитываются с применением эталонной плотности пожарной нагрузки q = 1300 МДж/м².
После расчета исходных диапазонов температур выполняется сравнение с имеющейся пожарной нагрузкой и исходной пожарной нагрузкой для расчета реальных диапазонов времени и соответствующих значений температуры. Расчет отдельных точек выполняется с помощью цикла. Кроме того, программа содержит типовой график изменения температуры (ETK), тем самым можно сразу же произвести сравнение со сценарием естественного пожара.
Результаты вычисления
Расчет показывает, что естественный пожар протекает менее интенсивно, чем в случае ETK, хотя для модели естественного пожара была выбрана очень высокая плотность пожарной нагрузки. Нагревание участка пожара также происходит более медленно, чем в случае ETK, что более соответствует реальному положению. Продолжительность сценария естественного пожара, как правило, значительно дольше, чем требуется, поскольку он всегда содержит стадию охлаждения. Стадия охлаждения включает в себя выгорание участка пожара и может быть значительно сокращена, например, за счет процесса тушения.