Cet article décrit l'application de la méthode de barre équivalente pour une poutre de toiture à inertie variable, comme celle de la Figure 1.
Définition des paramètres de modélisation et de vérification dans RFEM 6
L'analyse de stabilité des structures en bois selon la méthode des barres équivalentes nécessite l'activation du module complémentaire « Vérification du bois » dans RFEM 6 (Figure 2). Les modules complémentaires sont intégrés dans l'environnement RFEM afin que tous les paramètres puissent être définis parallèlement à la modélisation. Pour ce faire, il est nécessaire de cocher la case « Propriétés de calcul » lors de la définition de la barre (Figure 3).
As Image 1 shows, the timber girder has a span length of 14 m and section dimensions of <nobr>140 x 400 mm</nobr> and <nobr>140 x 900 mm</nobr> at the end and middle of the span, respectively. Le matériau utilisé est le bois lamellé-collé GL28C et peut être sélectionné dans la bibliothèque de matériaux de RFEM 6. En plus du poids propre de la barre, la poutre inclut une charge permanente de 1,75 kN/m et une charge de neige de 3,4 kN/m.
In RFEM 6, the section properties of the new member can be defined in the Section tab shown in Image 4. This roof girder type requires the selection of Saddle under the distribution type and an alignment with respect to the bottom of the section.
La distance k à laquelle les propriétés de la section diffèrent de celles au début et à la fin de la barre peut être définie et les sections peuvent être assignées à ces points.
Comme mentionné précédemment, RFEM 6 permet de définir simultanément les paramètres de modélisation et de calcul. Therefore, the member properties including effective lengths, service classes, shear panels, and rotational restraints can easily be set in the Design Types tab of the New Member window. Comme le montre la Figure 5, aucun panneau de cisaillement ou maintien en rotation n'est défini dans cet exemple et l'accent est mis sur l'assignation de la longueur efficace.
La définition des longueurs efficaces est indiquée sur la Figure 6. En règle général, vous pouvez considérer les longueurs efficaces pour le déversement et le flambement par flexion autour de l'axe principal et secondaire. Lors de la vérification selon la méthode de barre équivalente, le moment critique de flambement est calculé analytiquement.
Les appuis nodaux peuvent ensuite être définis et les coefficients de longueur efficace assignés. Dans cet exemple, les appuis nodaux sont disposés au début et à la fin de la barre (Figure 7), la longueur intégrale de la barre étant considérée pour l'analyse de stabilité.
Before starting the calculation, the user can define the parameters for the Ultimate Configuration. Les analyses de stabilité peuvent être activées dans la fenêtre des paramètres de calcul à l'ELU (Figure 8). À ce stade, vous pouvez également considérer l'effet (dé)stabilisateur de la charge, qui se traduit par une augmentation de la longueur efficace (Figure 9).
résultats
Once the calculation is done, the Timber Design results are available in both graphical and tabular form. As Image 10 shows, the design check ratios for each design type are displayed in the Results table, whereas all design check details can be accessed via the Design Check Details icon.
La possibilité d'effectuer une analyse de stabilité pour les barres à inertie variable à partir de la hauteur de la section équivalente est clairement affichée dans les détails de vérification. For instance, if the design check details for the stability design check type ST3100 (bending about the y-axis and compression according to 6.3.3., EN 1995 | CTE | 2014-07) are displayed, the depth of the section at the member location x=1.402 m is 500.1 mm (Image 11).
However, the depth value used to calculate the section properties (for example, elastic section modulus, moment of inertia, torsional constant, and so on) considered in the design check equations is in fact the Reference Section Height.
Les résultats montrent que la longueur totale de barre pour le calcul de stabilité conduit à des ratios de vérification supérieurs à 1. Pour résoudre ce problème, la longueur efficace peut être modifiée en définissant des maintiens aux nœuds intermédiaires le long de la travée (Figure 12). La nouvelle longueur efficace se traduit par des ratios de vérification améliorés, comme le montre la Figure 13.
Remarques finales
Les barres de section à inertie variable peuvent être facilement modélisées dans RFEM 6. L'intégration du module complémentaire Vérification du bois dans l'environnement RFEM permet de définir simultanément les paramètres de modélisation et de calcul de ces éléments. En termes d'analyse de stabilité, l'un des principaux avantages de RFEM 6 est la possibilité d'effectuer un calcul de stabilité des barres à inertie variable selon la méthode de la barre équivalente.
La possibilité de calculer des barres à inertie variable selon la méthode des barres équivalentes était jusqu'à présent inaccessible dans RFEM 5. Le calcul de barres à inertie variable selon la méthode des barres équivalentes était jusqu'à présent uniquement réalisable dans le programme autonome RX-TIMBER.
Veuillez noter qu'en plus de la méthode de barre équivalente, une analyse de stabilité basée sur la méthode des valeurs propres est également possible dans RFEM 6. L'analyse de stabilité basée sur cette méthode sera abordée dans un prochain article technique.